Responda:
Explicação:
A hipotenusa de um triângulo retângulo é 9 pés mais do que a perna mais curta e a perna mais longa é de 15 pés. Como você encontra o comprimento da hipotenusa e da perna mais curta?
Cor (azul) ("hipotenusa" = 17) cor (azul) ("perna curta" = 8) Seja bbx o comprimento da hipotenusa. A perna mais curta é 9 pés menor que a hipotenusa, então o comprimento da perna mais curta é: x-9 A perna mais longa é de 15 pés. Pelo teorema de Pitágoras o quadrado na hipotenusa é igual à soma dos quadrados dos outros dois lados: x ^ 2 = 15 ^ 2 + (x-9) ^ 2 Então precisamos resolver essa equação para x: x ^ 2 = 15 ^ 2 + (x-9) ^ 2 Expandir o suporte: x ^ 2 = 15 ^ 2 + x ^ 2-18x + 81 Simplificar: 306-18x = 0 x = 306/18 = 17 A hipotenusa é 17
Uma perna de um triângulo retângulo é 8 milímetros mais curta que a perna mais longa e a hipotenusa é 8 milímetros mais longa que a perna mais longa. Como você encontra os comprimentos do triângulo?
24 mm, 32 mm e 40 mm Chamada x perna curta Chame a perna longa Chame a hipotenusa Obtemos essas equações x = y - 8 h = y + 8. Aplique o teorema de Pitágoras: h ^ 2 = x ^ 2 + y ^ 2 (y + 8) ^ 2 = y ^ 2 + (y - 8) ^ 2 Desenvolver: y ^ 2 + 16y + 64 = y ^ 2 + y ^ 2 - 16y + 64 y ^ 2 - 32y = 0 y (y - 32) = 0 -> y = 32 mm x = 32 - 8 = 24 mm h = 32 + 8 = 40 mm Verifique: (40) ^ 2 = (24) ^ 2 + (32) ^ 2 ESTÁ BEM.
Uma pessoa faz um jardim triangular. O lado mais longo da seção triangular é 7 pés mais curto que o dobro do lado mais curto. O terceiro lado é 3 pés mais longo que o lado mais curto. O perímetro é de 60 pés. Quanto tempo dura cada lado?
O "lado mais curto" tem 16 pés de comprimento o "lado mais comprido" tem 25 pés de comprimento o "terceiro lado" tem 19 pés de comprimento Todas as informações dadas pela questão são em referência ao "lado mais curto" então vamos fazer o "menor lado "ser representado pela variável s agora, o lado mais longo é" 7 pés mais curto que o dobro do lado mais curto "se quebrarmos essa frase," duas vezes o lado mais curto "é 2 vezes o lado mais curto que nos pegaria: 2s "7 pés mais curtos