Responda:
Resolver
Resposta:
Explicação:
Substitua na equação
Como (a - b + c = 0), use o atalho. As duas raízes reais são:
a, cos x = - 1 ->
b.
A razão comum de uma progressão ggeométrica é r o primeiro termo da progressão é (r ^ 2-3r + 2) e a soma do infinito é S Mostre que S = 2-r (eu tenho) Encontre o conjunto de valores possíveis que S pode aguentar?
S = a / {1-r} = {r ^ 2-3r + 2} / {1-r} = {(r-1) (r-2)} / {1-r} = 2-r Como | r | <1 obtemos 1 <S <3 # Temos S = sum_ {k = 0} ^ {infty} (r ^ 2-3r + 2) r ^ k A soma geral de uma série geométrica infinita é sum_ {k = 0} ^ {infty} ar ^ k = a / {1-r} No nosso caso, S = {r ^ 2-3r + 2} / {1-r} = {(r-1) (r-2) }} / {1-r} = 2-r Séries geométricas convergem apenas quando | r | <1, então temos 1 <S <3 #
O domínio de f (x) é o conjunto de todos os valores reais, exceto 7, e o domínio de g (x) é o conjunto de todos os valores reais, exceto de -3. Qual é o domínio de (g * f) (x)?
Todos os números reais, exceto 7 e -3, quando você multiplica duas funções, o que estamos fazendo? estamos tomando o valor f (x) e multiplicamos pelo valor g (x), onde x deve ser o mesmo. No entanto, ambas as funções têm restrições, 7 e -3, portanto, o produto das duas funções deve ter restrições * both *. Normalmente, quando se tem operações em funções, se as funções anteriores (f (x) e g (x)) tinham restrições, elas sempre são tomadas como parte da nova restrição da nova função ou de sua opera
O número de valores integrais possíveis do parâmetro k para o qual a inequação k ^ 2x ^ 2 <(8k -3) (x + 6) é verdadeira para todos os valores de x satisfazendo x ^ 2 <x + 2 é?
0 x ^ 2 <x + 2 é verdadeiro para x em (-1,2) resolvendo agora para kk ^ 2 x ^ 2 - (8 k - 3) (x + 6) <0 temos k em ((24 + 4 x - sqrt [24 ^ 2 + 192 x - 2 x ^ 2 - 3 x ^ 3]) / x ^ 2, (24 + 4 x + sqrt [24 ^ 2 + 192 x - 2 x ^ 2 - 3 x ^ 3]) / x ^ 2) mas (24 + 4 x + sqrt [24 ^ 2 + 192 x - 2 x ^ 2 - 3 x ^ 3]) / x ^ 2 é ilimitado quando x se aproxima de 0, então a resposta é 0 valores inteiros para k obedecendo as duas condições.