Responda:
Para provar que o triângulo é isósceles, você tem que calcular o comprimento de seus lados.
Explicação:
Para calcular o comprimento, você deve usar a fórmula para a distância entre dois pontos em um avião:
Se você calcular os lados, descobrirá que:
O triângulo XYZ é isósceles. Os ângulos de base, ângulo X e ângulo Y, são quatro vezes a medida do ângulo do vértice, ângulo Z. Qual é a medida do ângulo X?
Configure duas equações com duas incógnitas. Você encontrará X e Y = 30 graus, Z = 120 graus. Você sabe que X = Y significa que você pode substituir Y por X ou vice-versa. Você pode elaborar duas equações: Como existem 180 graus em um triângulo, isso significa: 1: X + Y + Z = 180 Substitua Y por X: 1: X + X + Z = 180 1: 2X + Z = 180 também pode fazer outra equação baseada nesse ângulo Z é 4 vezes maior que o ângulo X: 2: Z = 4X Agora, vamos colocar a equação 2 na equação 1 substituindo Z por 4x: 2X + 4X = 180 6X = 180 X
Um triângulo é isósceles e agudo. Se um ângulo do triângulo mede 36 graus, qual é a medida do maior ângulo (s) do triângulo? Qual é a medida do menor ângulo (s) do triângulo?
A resposta a essa pergunta é fácil, mas requer algum conhecimento geral matemático e senso comum. Triângulo Isósceles: - Um triângulo cujos únicos dois lados são iguais é chamado triângulo isósceles. Um triângulo isósceles também tem dois anjos iguais. Triângulo Agudo: - Um triângulo cujos anjos são maiores que 0 ^ @ e menores que 90 ^ @, ou seja, todos os anjos são agudos é chamado de triângulo agudo. O triângulo dado tem um ângulo de 36 ^ e é tanto isósceles quanto agudo. implica que este triângulo
Um triângulo tem vértices A, B e C.O vértice A tem um ângulo de pi / 2, o vértice B tem um ângulo de (pi) / 3 e a área do triângulo é 9. Qual é a área do círculo do triângulo?
Círculo inscrito Área = 4,37405 "" unidades quadradas Resolva os lados do triângulo usando a área especificada = 9 e os ângulos A = pi / 2 e B = pi / 3. Use as seguintes fórmulas para Área: Área = 1/2 * a * b * sin C Área = 1/2 * b * c * sin A Área = 1/2 * a * c * sin B para que tenhamos 9 = 1 / 2 * a * b * sin (pi / 6) 9 = 1/2 * b * c * sin (pi / 2) 9 = 1/2 * a * c * sin (pi / 3) solução simultânea usando essas equações resultará em a = 2 * raiz4 108 b = 3 * raiz4 12 c = raiz4 108 resolve metade do perímetro ss = (a + b + c) /2=