
Responda:
Substitua f (x) por cada x e depois simplifique.
Explicação:
Dado:
Substitua f (x) por cada x
Multiplique o numerador e o denominador por 1 na forma de
Isso significa que
A função para o custo de materiais para fazer uma camisa é f (x) = 5 / 6x + 5 onde x é o número de camisas. A função para o preço de venda dessas camisas é g (f (x)), onde g (x) = 5x + 6. Como você encontra o preço de venda de 18 camisas?

A resposta é g (f (18)) = 106 Se f (x) = 5 / 6x + 5 e g (x) = 5x + 6 Então g (f (x)) = g (5 / 6x + 5) = 5 (5 / 6x + 5) +6 simplificando g (f (x)) = 25 / 6x + 25 + 6 = 25 / 6x + 31 Se x = 18 Então g (f (18)) = 25/6 * 18 + 31 = 25 * 3 + 31 = 75 + 31 = 106
O gráfico da função f (x) = (x + 2) (x + 6) é mostrado abaixo. Qual afirmação sobre a função é verdadeira? A função é positiva para todos os valores reais de x, onde x> -4. A função é negativa para todos os valores reais de x onde –6 <x <–2.

A função é negativa para todos os valores reais de x onde –6 <x <–2.
O par ordenado (2, 10), é uma solução de uma variação direta, como você escreve a equação de variação direta, então graficamente sua equação e mostra que a inclinação da linha é igual à constante de variação?

Y = 5x "dado" ypropx "then" y = kxlarrcolor (azul) "equação para variação direta" "onde k é a constante de variação" "para encontrar k use o ponto de coordenada dado" (2,10) y = kxrArrk = y / x = 10/2 = 5 "equação é" cor (vermelho) (barra (ul (| cor (branco) (2/2) cor (preto) (y = 5x) cor (branco) (2/2) |))) y = 5x "tem a forma" y = mxlarrcolor (azul) "m é a inclinação" rArry = 5x "é uma linha reta passando pela origem" "com declive m = 5" graph {5x [-10 ,