A área de um retângulo é de 100 polegadas quadradas. O perímetro do retângulo é de 40 polegadas. Um segundo retângulo tem a mesma área, mas um perímetro diferente. O segundo retângulo é um quadrado?
Não. O segundo retângulo não é um quadrado. A razão pela qual o segundo retângulo não é um quadrado é porque o primeiro retângulo é o quadrado. Por exemplo, se o primeiro retângulo (a.k.a. o quadrado) tiver um perímetro de 100 polegadas quadradas e um perímetro de 40 polegadas, então um lado deve ter um valor de 10. Com isto dito, vamos justificar a afirmação acima. Se o primeiro retângulo é de fato um quadrado * então todos os seus lados devem ser iguais. Além disso, isso realmente faz sentido porque, se um de seus lad
A perna mais longa de um triângulo retângulo é 3 polegadas mais que 3 vezes o comprimento da perna mais curta. A área do triângulo é de 84 polegadas quadradas. Como você encontra o perímetro de um triângulo retângulo?
P = 56 polegadas quadradas. Veja a figura abaixo para melhor compreensão. c = 3b + 3 (bc) / 2 = 84 (b. (3b + 3)) / 2 = 84 3b ^ 2 + 3b = 84xx2 3b ^ 2 + 3b-168 = 0 Resolvendo a equação quadrática: b_1 = 7 b_2 = -8 (impossível) Assim, b = 7 c = 3xx7 + 3 = 24 a ^ 2 = 7 ^ 2 + 24 ^ 2 a ^ 2 = 625 a = sqrt (625) = 25 P = 7 + 24 + 25 = 56 polegadas quadradas
A largura e o comprimento de um retângulo são números inteiros pares consecutivos. Se a largura é diminuída em 3 polegadas. então a área do retângulo resultante é de 24 polegadas quadradas. Qual é a área do retângulo original?
48 "polegadas quadradas" "deixa a largura" = n "então comprimento" = n + 2 n "e" n + 2color (azul) "são inteiros pares consecutivos" "a largura é diminuída por" 3 "polegadas largura" rArr " "= n-3" área "=" comprimento "xx" largura "rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArr ^ 2-n-30 = 0larrcolor (azul) "na forma padrão" "os fatores de - 30 que somam - 1 são + 5 e - 6" rArr (n-6) (n + 5) = 0 "igualam cada fator a zero e resolvem para n" n-6 = 0rA