Qual é o vetor unitário que é ortogonal ao plano contendo (20j + 31k) e (32i-38j-12k)?

Qual é o vetor unitário que é ortogonal ao plano contendo (20j + 31k) e (32i-38j-12k)?
Anonim

Responda:

O vetor unitário é #==1/1507.8<938,992,-640>#

Explicação:

O vetor ortogonal a 2 vectros em um plano é calculado com o determinante

# | (veci, vecj, veck), (d, e, f), (g, h, i) | #

Onde # 〈D, e, f〉 # e # 〈G, h, i〉 # são os 2 vetores

Aqui temos # veca = 〈0,20,31〉 # e # vecb = 〈32, -38, -12〉 #

Assim sendo, # | (veci, vecj, veck), (0,20,31), (32, -38, -12) | #

# = veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + veck | (0,20), (32, -38) | #

# veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) #

# = 〈938,992, -640〉 = vecc #

Verificação fazendo 2 produtos de ponto

#〈938,992,-640〉.〈0,20,31〉=938*0+992*20-640*31=0#

#〈938,992,-640〉.〈32,-38,-12〉=938*32-992*38+640*12=0#

Assim, # vecc # é perpendicular ao # veca # e # vecb #

O vetor unitário é

# hatc = vecc / || vecc || = (<938.992, -640>) / || <938.992, -640> || #

#=1/1507.8<938,992,-640>#