Responda:
Explicação:
Primeiro de tudo, o problema tem mais informações do que o necessário para resolvê-lo. Se o lado de um hexágono regular é igual a
O cálculo é simples. Nós podemos usar o Teorema de Pitágoras. Se o lado é
a partir do qual segue que
Então, se o lado é
A área de um hexágono regular é
Cada um desses triângulos tem base
A área de um hexágono é, portanto,
Suponha que um círculo de raio r esteja inscrito em um hexágono. Qual é a área do hexágono?
A área de um hexágono regular com um raio de círculo inscrito r é S = 2sqrt (3) r ^ 2 Obviamente, um hexágono regular pode ser considerado como consistindo de seis triângulos equiláteros com um vértice comum no centro de um círculo inscrito. A altitude de cada um desses triângulos é igual a r. A base de cada um desses triângulos (um lado de um hexágono que é perpendicular a um raio de altitude) é igual a r * 2 / sqrt (3) Portanto, uma área de um tal triângulo é igual a (1/2) * (r * 2 / sqrt (3)) * r = r ^ 2 / sqrt (3) A área de u
O perímetro de um hexágono regular é de 48 polegadas. Qual é o número de polegadas quadradas na diferença positiva entre as áreas dos círculos circunscrito e inscrito do hexágono? Expresse sua resposta em termos de pi.
Cor (azul) ("Diferença na área entre os círculos circunscritos e inscritos" cor (verde) (A_d = pi R ^ 2 - pi r ^ 2 = 36 pi - 27 pi = 9pi "polegada quadrada" Perímetro de hexágono regular P = 48 "polegadas" Lado do hexágono a = P / 6 = 48/6 = 6 "polegadas" O hexágono regular consiste em 6 triângulos equilaterais de cada lado. Círculo inscrito: Raio r = a / (2 tan teta), teta = 60 / 2 = 30 ^ @ r = 6 / (2 tan (30)) = 6 / (2 (1 / sqrt3)) = 3 sqrt 3 "polegadas" "Área do círculo inscrito" A_r = pi r ^ 2 = pi ( 3 sqr
Qual é a área de um hexágono regular com lado 2sqrt3 e apótema 3?
18 sqrt 3 2p = 6 cdot 2sqrt 3 A = p cdot a = 6 sqrt 3 cdot 3