Responda:
Explicação:
Um radiano seria o equivalente a falar o raio do círculo e pressioná-lo na circunferência do círculo, curvando-o.
O raio deste círculo é de 12 polegadas. Então, eu preciso encontrar quantas linhas de 12 polegadas para alinhar ao longo do círculo para obter uma curva que é de 31 centímetros de comprimento.
Para fazer isso, eu posso dividir 31 por 12. (Lembre-se disto é o mesmo que perguntar "quantos 12 estão em 31).
A resposta é
A perna mais longa de um triângulo retângulo é 3 polegadas mais que 3 vezes o comprimento da perna mais curta. A área do triângulo é de 84 polegadas quadradas. Como você encontra o perímetro de um triângulo retângulo?
P = 56 polegadas quadradas. Veja a figura abaixo para melhor compreensão. c = 3b + 3 (bc) / 2 = 84 (b. (3b + 3)) / 2 = 84 3b ^ 2 + 3b = 84xx2 3b ^ 2 + 3b-168 = 0 Resolvendo a equação quadrática: b_1 = 7 b_2 = -8 (impossível) Assim, b = 7 c = 3xx7 + 3 = 24 a ^ 2 = 7 ^ 2 + 24 ^ 2 a ^ 2 = 625 a = sqrt (625) = 25 P = 7 + 24 + 25 = 56 polegadas quadradas
A largura e o comprimento de um retângulo são números inteiros pares consecutivos. Se a largura é diminuída em 3 polegadas. então a área do retângulo resultante é de 24 polegadas quadradas. Qual é a área do retângulo original?
48 "polegadas quadradas" "deixa a largura" = n "então comprimento" = n + 2 n "e" n + 2color (azul) "são inteiros pares consecutivos" "a largura é diminuída por" 3 "polegadas largura" rArr " "= n-3" área "=" comprimento "xx" largura "rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArr ^ 2-n-30 = 0larrcolor (azul) "na forma padrão" "os fatores de - 30 que somam - 1 são + 5 e - 6" rArr (n-6) (n + 5) = 0 "igualam cada fator a zero e resolvem para n" n-6 = 0rA
Qual é a circunferência de um círculo de 15 polegadas se o diâmetro de um círculo é diretamente proporcional ao seu raio e um círculo com um diâmetro de 2 polegadas tem uma circunferência de aproximadamente 6,28 polegadas?
Acredito que a primeira parte da pergunta deveria dizer que a circunferência de um círculo é diretamente proporcional ao seu diâmetro. Esse relacionamento é como nós ficamos pi. Conhecemos o diâmetro e a circunferência do círculo menor, "2 in" e "6,28 in", respectivamente. Para determinar a proporção entre a circunferência e o diâmetro, dividimos a circunferência pelo diâmetro, "6.28 in" / "2 in" = "3.14", que se parece muito com pi. Agora que sabemos a proporção, podemos multiplicar o di