Responda:
5
Explicação:
Deixe os quatro vetores
Então, o conjunto
Na verdade, é possível que o espaço de
Apenas como um exemplo, vamos
É fácil ver que os vetores
formar uma base de
Digamos que eu tenha 480 dólares para cercar em um jardim retangular. A vedação para os lados norte e sul do jardim custa US $ 10 por pé e a cerca para os lados leste e oeste custa US $ 15 por pé. Como posso encontrar as dimensões do maior jardim possível?
Vamos chamar o comprimento dos lados N e S x (pés) e os outros dois nós chamaremos de y (também em pés). Então o custo da cerca será: 2 * x * $ 10 para N + S e 2 * y * $ 15 para E + W Então a equação para o custo total da cerca será: 20x + 30y = 480 Nós separamos y: 30y = 480-20x-> y = 16-2 / 3 x Área: A = x * y, substituindo y na equação que obtemos: A = x * (16-2 / 3 x) = 16x-2/3 x ^ 2 Para encontrar o máximo, temos que diferenciar essa função e, em seguida, definir a derivada para 0 A '= 16-2 * 2 / 3x = 16-4 / 3 x = 0 O qual reso
Mateus tem dois estoques diferentes. Um vale US $ 9 a mais por ação do que o outro. Ele tem 17 ações das ações mais valiosas e 42 ações das outras ações. Seu total de ativos em ações é de US $ 1923. Quanto custa o estoque mais caro por ação?
O valor da parte cara é de US $ 39 cada e a ação vale US $ 663. Deixe as ações com menor valor valerem US $ x cada. Dado que: Um vale US $ 9 a mais por ação do que o outro. Então, o valor de outra ação = $ x + 9 ...... será o valor mais alto. Dado que: Ele tem 17 ações do estoque mais valioso e 42 ações do outro estoque. Isso significa que Ele tem 17 ações de valor $ x + 9 e 42 ações de valor $ x. Assim, o estoque de ações de menor valor vale = $ 42 xe o estoque de mais ações de valor vale = 17xx (x + 9) = $ (
Originalmente as dimensões de um retângulo eram 20cm por 23cm. Quando ambas as dimensões foram reduzidas na mesma quantidade, a área do retângulo diminuiu em 120cm². Como você encontra as dimensões do novo retângulo?
As novas dimensões são: a = 17 b = 20 Área original: S_1 = 20xx23 = 460cm ^ 2 Nova área: S_2 = 460-120 = 340cm ^ 2 (20-x) xx (23-x) = 340 460-20x- 23x + x ^ 2 = 340 x ^ 2-43x + 120 = 0 Resolvendo a equação quadrática: x_1 = 40 (alta porque é maior que 20 e 23) x_2 = 3 As novas dimensões são: a = 20-3 = 17 b = 23-3 = 20