Responda:
O comprimento é
Explicação:
Podemos usar o Teorema de Pitágoras.
Deixe a largura ser
O comprimento é então
Pelo Teorema de Pitágoras:
Encontre fatores de 5 e 165 que subtraem para dar 8
Observe que
E se
Nós também poderíamos ter adivinhado este resultado usando o
Triplos pitagóricos … 13 é uma pista!
Os triplos comuns são:
Observe que
A diagonal de um retângulo é de 13 polegadas. O comprimento do retângulo é 7 polegadas maior que sua largura. Como você encontra o comprimento e a largura do retângulo?
Vamos chamar a largura x. Então o comprimento é x + 7 A diagonal é a hipotenusa de um triângulo retangular. Então: d ^ 2 = l ^ 2 + w ^ 2 ou (preenchendo o que sabemos) 13 ^ 2 = 169 = (x + 7) ^ 2 + x ^ 2 = x ^ 2 + 14x + 49 + x ^ 2 -> 2x ^ 2 + 14x-120 = 0-> x ^ 2 + 7x-60 = 0 Uma equação quadrática simples resolvendo em: (x + 12) (x-5) = 0-> x = -12orx = 5 Apenas a solução positiva é utilizável assim: w = 5 el = 12 Extra: O triângulo (5,12,13) é o segundo triângulo pitagórico mais simples (onde todos os lados são números inteir
O comprimento de um retângulo é 4 menor que o dobro da largura. a área do retângulo é de 70 pés quadrados. encontre a largura, w, do retângulo algebricamente. explique por que uma das soluções para w não é viável. ?
Uma resposta é negativa e o comprimento nunca pode ser 0 ou inferior. Seja w = "largura" Vamos 2w - 4 = "comprimento" "Área" = ("comprimento") ("largura") (2w - 4) (w) = 70 2w ^ 2 - 4w = 70 w ^ 2 - 2w = 35 w ^ 2 - 2w - 35 = 0 (w-7) (w + 5) = 0 Então w = 7 ou w = -5 w = -5 não é viável porque as medições têm que estar acima de zero.
O comprimento de um retângulo é o dobro de sua largura. Se a área do retângulo é menor que 50 metros quadrados, qual é a maior largura do retângulo?
Chamaremos essa largura = x, o que faz com que o comprimento = 2x Área = comprimento vezes a largura, ou: 2x * x <50-> 2x ^ 2 <50-> x ^ 2 <25-> x <sqrt25-> x <5 Resposta: a maior largura é (logo abaixo) 5 metros. Nota: Em matemática pura, x ^ 2 <25 também lhe daria a resposta: x> -5, ou combinado -5 <x <+5 Neste exemplo prático, descartamos a outra resposta.