Responda:
ver abaixo
Explicação:
Use a definição
Lado esquerdo:
Lado direito:
O que é um número real, um número inteiro, um número inteiro, um número racional e um número irracional?
Explanation Abaixo dos números Rational vêm em 3 formas diferentes; inteiros, frações e decimais terminais ou recorrentes, como 1/3. Os números irracionais são bastante "confusos". Eles não podem ser escritos como frações, eles são infinitos, decimais não repetitivos. Um exemplo disso é o valor de π. Um número inteiro pode ser chamado de inteiro e é um número positivo ou negativo ou zero. Um exemplo disso é 0, 1 e -365.
Penny estava olhando para o guarda-roupa dela. O número de vestidos que ela possuía era 18, mais que o dobro do número de roupas. Juntos, o número de vestidos e o número de processos totalizaram 51. Qual era o número de cada um que ela possuía?
A moeda de um centavo possui 40 vestidos e 11 ternos Os d e s são o número de vestidos e de ternos respectivamente. Dizem-nos que o número de vestidos é 18 mais que o dobro do número de vestidos. Portanto: d = 2s + 18 (1) Também nos é dito que o número total de vestidos e trajes é 51. Portanto, d + s = 51 (2) De (2): d = 51-s Substituindo por d em (1 ) acima: 51-s = 2s + 18 3s = 33 s = 11 Substituindo por s em (2) acima: d = 51-11 d = 40 Assim o número de vestidos (d) é 40 e o número de naipes (s ) é 11.
Com que expoente o poder de qualquer número se torna 0? Como sabemos que (qualquer número) ^ 0 = 1, então qual será o valor de x em (qualquer número) ^ x = 0?
Veja abaixo: Seja z um número complexo com estrutura z = rho e ^ {i phi} com rho> 0, rho em RR e phi = arg (z) podemos fazer esta pergunta. Para quais valores de n em RR ocorre z ^ n = 0? Desenvolvendo um pouco mais z ^ n = rho ^ ne ^ {em phi} = 0-> e ^ {em phi} = 0 porque por rho hipotético> 0. Então, usando a identidade de Moivre e ^ {in phi} = cos (n phi ) + i sen (n phi) ent ao z ^ n = 0-> cos (n phi) + i sin (n phi) = 0-> n phi = pi + 2k pi, k = 0, pm1, pm2, pm3, cdots Finalmente, para n = (pi + 2k pi) / phi, k = 0, pm1, pm2, pm3, cdots obtemos z ^ n = 0