Responda:
Explicação:
Lembre-se que o Área
Prove a seguinte declaração. Seja ABC qualquer triângulo retângulo, o ângulo reto no ponto C. A altitude traçada de C até a hipotenusa divide o triângulo em dois triângulos retângulos semelhantes uns aos outros e ao triângulo original?
Ver abaixo. De acordo com a Questão, DeltaABC é um triângulo retângulo com / _C = 90 ^ @, e CD é a altitude para a hipotenusa AB. Prova: Vamos supor que / _ABC = x ^ @. Então, angleBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Agora, CD perpendicular AB. Então, angleBDC = angleADC = 90 ^ @. Em DeltaCBD, angleBCD = 180 ^ @ - angleBDC - angleCBD = 180 ^ @ - 90 ^ @ - x ^ @ = (90 -x) ^ @ Similarmente, angleACD = x ^ @. Agora, em DeltaBCD e DeltaACD, ângulo CBD = ângulo ACD e ângulo BDC = angleADC. Assim, por AA Criteria of Similarity, DeltaBCD ~ = DeltaACD. Da mesma forma, podemos encont
Um triângulo é isósceles e agudo. Se um ângulo do triângulo mede 36 graus, qual é a medida do maior ângulo (s) do triângulo? Qual é a medida do menor ângulo (s) do triângulo?
A resposta a essa pergunta é fácil, mas requer algum conhecimento geral matemático e senso comum. Triângulo Isósceles: - Um triângulo cujos únicos dois lados são iguais é chamado triângulo isósceles. Um triângulo isósceles também tem dois anjos iguais. Triângulo Agudo: - Um triângulo cujos anjos são maiores que 0 ^ @ e menores que 90 ^ @, ou seja, todos os anjos são agudos é chamado de triângulo agudo. O triângulo dado tem um ângulo de 36 ^ e é tanto isósceles quanto agudo. implica que este triângulo
Um triângulo tem vértices A, B e C.O vértice A tem um ângulo de pi / 2, o vértice B tem um ângulo de (pi) / 3 e a área do triângulo é 9. Qual é a área do círculo do triângulo?
Círculo inscrito Área = 4,37405 "" unidades quadradas Resolva os lados do triângulo usando a área especificada = 9 e os ângulos A = pi / 2 e B = pi / 3. Use as seguintes fórmulas para Área: Área = 1/2 * a * b * sin C Área = 1/2 * b * c * sin A Área = 1/2 * a * c * sin B para que tenhamos 9 = 1 / 2 * a * b * sin (pi / 6) 9 = 1/2 * b * c * sin (pi / 2) 9 = 1/2 * a * c * sin (pi / 3) solução simultânea usando essas equações resultará em a = 2 * raiz4 108 b = 3 * raiz4 12 c = raiz4 108 resolve metade do perímetro ss = (a + b + c) /2=