A soma de três números é 137. O segundo número é quatro mais que, duas vezes o primeiro número. O terceiro número é cinco menos que, três vezes o primeiro número. Como você encontra os três números?
Os números são 23, 50 e 64. Comece escrevendo uma expressão para cada um dos três números. Eles são todos formados a partir do primeiro número, então vamos chamar o primeiro número x. Deixe o primeiro número ser x O segundo número é 2x +4 O terceiro número é 3x -5 Dizem-nos que a soma deles é 137. Isto significa que quando os somamos todos juntos, a resposta será 137. Escreva uma equação. (x) + (2x + 4) + (3x - 5) = 137 Os colchetes não são necessários, eles são incluídos para maior clareza. 6x -1 = 137 6x = 1
Duas vezes um número mais três vezes outro número é igual a 4. Três vezes o primeiro número mais quatro vezes o outro número é 7. Quais são os números?
O primeiro número é 5 e o segundo é -2. Seja x o primeiro número e y o segundo. Então nós temos {(2x + 3y = 4), (3x + 4y = 7):} Podemos usar qualquer método para resolver este sistema. Por exemplo, por eliminação: Primeiro, eliminando x subtraindo um múltiplo da segunda equação do primeiro, 2x + 3y- 2/3 (3x + 4y) = 4 - 2/3 (7) => 1 / 3y = - 2/3 => y = -2 substituindo esse resultado pela primeira equação, 2x + 3 (-2) = 4 => 2x - 6 = 4 => 2x = 10 => x = 5 Assim, o primeiro número é 5 e o segundo é -2. Verificar, conectando-os,
Um número é 8 mais que o outro número. A soma de 2 vezes o menor número mais 4 vezes o maior número é 186. Quais são os dois números?
Os dois números são: "" 25 2/3 ";" 33 3/3 Deixe o primeiro número ser x_1 Deixe o segundo número ser x_2 Separando a questão e usando-a para construir o sistema Um número é 8 a mais que o outro > x_1 = x_2 + 8 ...... (1) O menor número tem que ser x_2 Duas vezes o menor número -> 2 x_2 Mais 4 vezes -> 2x_2 + (4xx?) O maior número -> 2x_2 + (4xxx_1) é 186 -> 2x_2 + (4xxx_1) = 186 ............... (2) '~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 2x_2 + 4x_1 = 186 Mas da equação (1) cor (azul) (x_1 = x_2 + 8 Substitua a equaç