A equação de uma linha é 2x + 3y - 7 = 0, encontre: - (1) declive da linha (2) a equação de uma linha perpendicular à linha dada e passando pela interseção da linha x-y + 2 = 0 e 3x + y-10 = 0?
-3x + 2y-2 = 0 cor (branco) ("ddd") -> cor (branco) ("ddd") y = 3 / 2x + 1 Primeira parte em muitos detalhes demonstrando como os primeiros princípios funcionam. Uma vez usado para estes e usando atalhos, você usará muito menos linhas. cor (azul) ("Determinar a intercepção das equações iniciais") x-y + 2 = 0 "" ....... Equação (1) 3x + y-10 = 0 "" .... Equação ( 2) Subtraia x de ambos os lados da Eqn (1) dando -y + 2 = -x Multiplique ambos os lados por (-1) + y-2 = + x "" ........... Equação (1_a
Tomas escreveu a equação y = 3x + 3/4. Quando Sandra escreveu sua equação, eles descobriram que sua equação tinha todas as mesmas soluções que a equação de Tomas. Qual equação poderia ser da Sandra?
4y = 12x +3 12x-4y +3 = 0 Uma equação pode ser dada em muitas formas e ainda significa o mesmo. y = 3x + 3/4 "" (conhecida como a forma inclinação / intercepção). Multiplicada por 4 para remover a fração, obtém-se: 4y = 12x +3 "" rarr 12x-4y = -3 "" (forma padrão) 12x- 4y +3 = 0 "" (forma geral) Estas são todas da forma mais simples, mas também poderíamos ter variações infinitas delas. 4y = 12x + 3 poderia ser escrito como: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 etc
Qual afirmação melhor descreve a equação (x + 5) 2 + 4 (x + 5) + 12 = 0? A equação é quadrática na forma porque pode ser reescrita como uma equação quadrática com a substituição u = (x + 5). A equação é quadrática em forma porque quando é expandida,
Como explicado abaixo, a substituição de u irá descrevê-lo como quadrático em u. Para quadrática em x, sua expansão terá a maior potência de x como 2, melhor descreve-a como quadrática em x.