A meia-vida do seu radioisótopo é
Quando os números permitem, a maneira mais rápida de determinar a meia-vida de um radioisótopo é usar a fração deixada sem pagamento como uma medida de quantas meias-vidas se passaram.
Você sabe que a massa de um isótopo radioativo fica metade com o passar do cada meia-vida, o que significa que
Como você pode ver, 4 meias-vidas devem passar até que você tenha 1/16 da amostra original. Matematicamente, isso significa que
Desde que você sabe que 26,4 dias passado, a meia-vida do isótopo será
Tunga leva mais 3 dias do que o número de dias de Gangadevi para completar um trabalho. Se tanto o tunga quanto o Gangadevi juntos podem completar o mesmo trabalho em 2 dias, em quantos dias o tunga sozinho pode completar o trabalho?
6 dias G = o tempo, expresso em dias, que Gangadevi leva para completar uma peça (unidade) de trabalho. T = o tempo, expresso em dias, que Tunga leva para completar uma unidade (unidade) de trabalho e sabemos que T = G + 3 1 / G é a velocidade de trabalho de Gangadevi, expressa em unidades por dia 1 / T é a velocidade de trabalho de Tunga , expressos em unidades por dia. Quando eles trabalham juntos, eles demoram 2 dias para criar uma unidade, então sua velocidade combinada é 1 / T + 1 / G = 1/2, expressa em unidades por dia, substituindo T = G + 3 em a equação acima e resolvendo para uma
O peso atômico de um elemento recém-descoberto é de 98,225 amu. Tem dois isótopos que ocorrem naturalmente. Um isótopo tem uma massa de 96.780 amu. O segundo isótopo tem uma abundância percentual de 41,7%. Qual é a massa do segundo isótopo?
100.245 "amu" M_r = (soma (M_ia)) / a, em que: M_r = massa atômica relativa (g mol-1) M_i = massa de cada isótopo (g mol-1) a = abundância, dada como um percentagem ou quantidade de g 98,225 = (96,780 (100-41,7) + M_i (41,7)) / 100 M_i = (98,225 (100) -96,780 (58,3)) / 41,7 = 100,245 "amu"
Papai e filho trabalham em um determinado trabalho que eles terminam em 12 dias. Após 8 dias o filho fica doente. Para terminar o trabalho, o pai tem que trabalhar mais 5 dias. Quantos dias eles teriam que trabalhar para terminar o trabalho, se trabalhassem separadamente?
O texto apresentado pelo autor da pergunta é tal que não é solucionável (a menos que eu tenha perdido alguma coisa). O reescrita faz com que seja solucionável. Definitivamente afirma que o trabalho está "terminado" em 12 dias. Então, continua dizendo (8 + 5) que leva mais de 12 dias, o que está em conflito direto com o texto anterior. TENTATIVA EM UMA SOLUÇÃO Suponha que mudemos: "Papai e filho trabalham em um determinado trabalho que terminam em 12 dias". Em: "Papai e filho trabalham em um determinado trabalho que eles esperam terminar em 12 dias&q