Questão 1
E se
Então se
então o primeiro derivado
e a segunda derivada é
Questão 2
E se
e usando procedimentos padrão para tomar o derivado
ou, se você preferir
Qual é a primeira derivada e segunda derivada de 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(a primeira derivada)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(a segunda derivada)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (d) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(a primeira derivada)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(a segunda derivada)"
Sua gaveta de meias é uma bagunça e contém 8 meias brancas, 6 meias pretas e 4 meias vermelhas. Qual é a probabilidade de que a primeira meia que você tira será preta e a segunda meia que você tira sem substituir a primeira meia será preta?
1 / 3,5 / 17> "Probabilidade de um evento" é. cor (vermelho) (barra (ul (| cor (branco) (2/2) cor (preto) (("número de resultados favoráveis") / ("número total de resultados possíveis")) cor (branco) (2 / 2) |))) "aqui o resultado favorável é retirar uma meia preta" da qual existem 6. "número de resultados possíveis" = 8 + 6 + 4 = 18 rArrP ("meia preta") = 6/18 = 1 / 3 Sem meios de substituição, há agora um total de 17 meias, das quais 5 serão pretas. rArrP ("segunda meia preta") = 5/17
Qual é a primeira derivada e segunda derivada de x ^ 4 - 1?
F ^ '(x) = 4x ^ 3 f ^' '(x) = 12x ^ 2 para encontrar a primeira derivada devemos simplesmente usar três regras: 1. Regra de poder d / dx x ^ n = nx ^ (n-1 ) 2. Regra constante d / dx (c) = 0 (onde c é um inteiro e não uma variável) 3. Regra de soma e diferença d / dx [f (x) + - g (x)] = [f ^ ' (x) + - g ^ '(x)] a primeira derivada resulta em: 4x ^ 3-0 que simplifica para 4x ^ 3 para encontrar a segunda derivada, devemos derivar a primeira derivada aplicando novamente a regra de potência que resulta em : 12x ^ 3 você pode continuar se quiser: terceira derivada = 36x ^ 2