Responda:
Explicação:
Comece encontrando a inclinação da linha usando a fórmula
Para os pontos
Esta equação é na verdade uma linha horizontal que percorre o eixo y em
O par ordenado (2, 10), é uma solução de uma variação direta, como você escreve a equação de variação direta, então graficamente sua equação e mostra que a inclinação da linha é igual à constante de variação?
Y = 5x "dado" ypropx "then" y = kxlarrcolor (azul) "equação para variação direta" "onde k é a constante de variação" "para encontrar k use o ponto de coordenada dado" (2,10) y = kxrArrk = y / x = 10/2 = 5 "equação é" cor (vermelho) (barra (ul (| cor (branco) (2/2) cor (preto) (y = 5x) cor (branco) (2/2) |))) y = 5x "tem a forma" y = mxlarrcolor (azul) "m é a inclinação" rArry = 5x "é uma linha reta passando pela origem" "com declive m = 5" graph {5x [-10 ,
Tomas escreveu a equação y = 3x + 3/4. Quando Sandra escreveu sua equação, eles descobriram que sua equação tinha todas as mesmas soluções que a equação de Tomas. Qual equação poderia ser da Sandra?
4y = 12x +3 12x-4y +3 = 0 Uma equação pode ser dada em muitas formas e ainda significa o mesmo. y = 3x + 3/4 "" (conhecida como a forma inclinação / intercepção). Multiplicada por 4 para remover a fração, obtém-se: 4y = 12x +3 "" rarr 12x-4y = -3 "" (forma padrão) 12x- 4y +3 = 0 "" (forma geral) Estas são todas da forma mais simples, mas também poderíamos ter variações infinitas delas. 4y = 12x + 3 poderia ser escrito como: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 etc
Uma linha passa pelos pontos (2,1) e (5,7). Outra linha passa pelos pontos (-3,8) e (8,3). As linhas são paralelas, perpendiculares ou não?
Nem paralelo nem perpendicular Se o gradiente de cada linha é o mesmo, então eles são paralelos. Se o gradiente de é o inverso negativo do outro, então eles são perpendiculares entre si. Isto é: um é m "e o outro é" -1 / m Deixe a linha 1 ser L_1 Deixe a linha 2 ser L_2 Deixe o gradiente da linha 1 ser m_1 Deixe o gradiente da linha 2 ser m_2 "gradiente" = ("Alterar y -axis ") / (" Alteração no eixo x ") => m_1 = (7-1) / (5-2) = 6/3 = +2 .............. ....... (1) => m_2 = (3-8) / (8 - (- 3)) = (-5) / (11) ............. ...