Responda:
Explicação:
Primeiro encontre a inclinação perpendicular da equação:
Agora, usando o declive acima e o ponto
Portanto,
Você pode deixar a equação como essa ou, se necessário, escrever a equação em
A equação de uma linha é 2x + 3y - 7 = 0, encontre: - (1) declive da linha (2) a equação de uma linha perpendicular à linha dada e passando pela interseção da linha x-y + 2 = 0 e 3x + y-10 = 0?
-3x + 2y-2 = 0 cor (branco) ("ddd") -> cor (branco) ("ddd") y = 3 / 2x + 1 Primeira parte em muitos detalhes demonstrando como os primeiros princípios funcionam. Uma vez usado para estes e usando atalhos, você usará muito menos linhas. cor (azul) ("Determinar a intercepção das equações iniciais") x-y + 2 = 0 "" ....... Equação (1) 3x + y-10 = 0 "" .... Equação ( 2) Subtraia x de ambos os lados da Eqn (1) dando -y + 2 = -x Multiplique ambos os lados por (-1) + y-2 = + x "" ........... Equação (1_a
Tomas escreveu a equação y = 3x + 3/4. Quando Sandra escreveu sua equação, eles descobriram que sua equação tinha todas as mesmas soluções que a equação de Tomas. Qual equação poderia ser da Sandra?
4y = 12x +3 12x-4y +3 = 0 Uma equação pode ser dada em muitas formas e ainda significa o mesmo. y = 3x + 3/4 "" (conhecida como a forma inclinação / intercepção). Multiplicada por 4 para remover a fração, obtém-se: 4y = 12x +3 "" rarr 12x-4y = -3 "" (forma padrão) 12x- 4y +3 = 0 "" (forma geral) Estas são todas da forma mais simples, mas também poderíamos ter variações infinitas delas. 4y = 12x + 3 poderia ser escrito como: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 etc
Prove que dada uma linha e ponto não nessa linha, há exatamente uma linha que passa por esse ponto perpendicular através dessa linha? Você pode fazer isso matematicamente ou através da construção (os gregos antigos fizeram)?
Ver abaixo. Vamos supor que a linha dada é AB, e o ponto é P, que não está em AB. Agora, vamos supor que desenhamos um PO perpendicular em AB. Temos que provar que, este PO é a única linha que passa por P que é perpendicular a AB. Agora, vamos usar uma construção. Vamos construir outro PC perpendicular em AB a partir do ponto P. Agora a prova. Temos, OP perpendicular AB [eu não posso usar o sinal perpendicular, como annyoing] E, também, PC perpendicular AB. Então, OP || PC. [Ambos são perpendiculares na mesma linha.] Agora, ambos OP e PC possuem ponto P em co