Há uma única fórmula que se refere a "diferença de quadrados":
Se usarmos o FOIL, podemos provar isso. Diferença de quadrados refere-se a fazer algo como o seguinte:
Ou até mesmo a aplicação dupla aqui
É x ^ 12-y ^ 12 diferença de dois quadrados ou diferença de dois cubos?
Poderia ser ambos, na verdade. Você pode usar as propriedades de poderes exponenciais para escrever esses termos como uma diferença de quadrados e como uma diferença de cubos. Como (a ^ x) ^ y = a ^ (xy), você pode dizer que x ^ (12) = x ^ (6 * cor (vermelho) (2)) = (x ^ (6)) ^ (cor vermelho) (2)) e y ^ (12) = (y ^ (6)) ^ (cor (vermelho) (2) Isso significa que você obtém x ^ (12) - y ^ (12) = (x ^ ( 6)) ^ (2) - (y ^ (6)) ^ (2) = (x ^ (6) - y ^ (6)) (x ^ (6) + y ^ (6)) Da mesma forma, x ^ (12) = x ^ (4 * cor (vermelho) (3)) = (x ^ (4)) ^ (cor (vermelho) (3)) e y ^ (12) = (y ^ (4)) ^ (cor (verme
A diferença entre os quadrados de dois números é 80. Se a soma dos dois números for 16, qual é a diferença positiva deles?
Diferença positiva entre os dois números é cor (vermelho) 5 Vamos assumir que os dois números dados são aeb É dado que a cor (vermelho) (a + b = 16) ... Equação.1 Além disso, cor (vermelho ) (a ^ 2-b ^ 2 = 80) ... Equação.2 Considere Equação.1 a + b = 16 Equação.3 rArr a = 16 - b Substitua este valor de a na Equação.2 (16-b) ^ 2-b ^ 2 = 80 rArr (256 - 32b + b ^ 2) -b ^ 2 = 80 rARr 256 - 32b cancelar (+ b ^ 2) cancelar (-b ^ 2) = 80 rARr 256 - 32b = 80 rArr -32b = 80 - 256 rArr -32b = - 176 rArr 32b = 176 rArr b = 176/32 Portanto, cor (azul
A soma dos quadrados de dois números naturais é 58. A diferença de seus quadrados é 40. Quais são os dois números naturais?
Os números são 7 e 3. Deixamos os números serem x e y. {(x ^ 2 + y ^ 2 = 58), (x ^ 2 - y ^ 2 = 40):} Podemos resolver isso facilmente usando eliminação, notando que o primeiro y ^ 2 é positivo e o segundo é negativo. Ficamos com: 2x ^ 2 = 98 x ^ 2 = 49 x = + -7 No entanto, uma vez que é afirmado que os números são naturais, ou seja, maior que 0, x = + 7. Agora, resolvendo para y, temos: 7 ^ 2 + y ^ 2 = 58 y ^ 2 = 9 y = 3 Espero que isso ajude!