O radiano é uma medida melhor que graus para ângulos porque:
- Isso faz você parecer mais sofisticado se falar em termos de números irracionais.
- Ele permite calcular facilmente o comprimento do arco sem recorrer a funções trigonométricas.
(Ponto 2, talvez seja válido … ponto 1, não tanto).
Até certo ponto, é uma questão de familiaridade do público; onde eu moro, se eu estava dando instruções e disse a alguém para ir em frente 100 metros, em seguida, vire à direita
Minha ideia pessoal é que:
A unidade radiana expressa a medida do comprimento de um arco ao longo da conferência. Essa medida parece muito concreta. Por exemplo:
O grau reflete a medida de um ângulo a partir do centro do círculo. Esta medida é obviamente muito abstrata.
O par ordenado (2, 10), é uma solução de uma variação direta, como você escreve a equação de variação direta, então graficamente sua equação e mostra que a inclinação da linha é igual à constante de variação?
Y = 5x "dado" ypropx "then" y = kxlarrcolor (azul) "equação para variação direta" "onde k é a constante de variação" "para encontrar k use o ponto de coordenada dado" (2,10) y = kxrArrk = y / x = 10/2 = 5 "equação é" cor (vermelho) (barra (ul (| cor (branco) (2/2) cor (preto) (y = 5x) cor (branco) (2/2) |))) y = 5x "tem a forma" y = mxlarrcolor (azul) "m é a inclinação" rArry = 5x "é uma linha reta passando pela origem" "com declive m = 5" graph {5x [-10 ,
Objetos A, B, C com massas m, 2 me m são mantidos em uma superfície menos horizontal de fricção. O objeto A se move em direção a B com uma velocidade de 9 m / se faz uma colisão elástica com ele. B faz colisão completamente inelástica com C. Então a velocidade de C é?
Com uma colisão completamente elástica, pode-se supor que toda a energia cinética é transferida do corpo em movimento para o corpo em repouso. 1 / 2m_ "inicial" v ^ 2 = 1 / 2m_ "outro" v_ "final" ^ 2 1 / 2m (9) ^ 2 = 1/2 (2m) v_ "final" ^ 2 81/2 = v_ "final "^ 2 sqrt (81) / 2 = v_" final "v_" final "= 9 / sqrt (2) Agora, em uma colisão completamente inelástica, toda a energia cinética é perdida, mas o momento é transferido. Portanto m_ "inicial" v = m_ "final" v_ "final" 2m9 / sqr
Qual afirmação melhor descreve a equação (x + 5) 2 + 4 (x + 5) + 12 = 0? A equação é quadrática na forma porque pode ser reescrita como uma equação quadrática com a substituição u = (x + 5). A equação é quadrática em forma porque quando é expandida,
Como explicado abaixo, a substituição de u irá descrevê-lo como quadrático em u. Para quadrática em x, sua expansão terá a maior potência de x como 2, melhor descreve-a como quadrática em x.