Como você resolve x ^ 2 + 3x + 2 = 0?

Como você resolve x ^ 2 + 3x + 2 = 0?
Anonim

Responda:

As soluções para a equação são:

#color (azul) (x = -1, x = -2 #

Explicação:

# x ^ 2 + 3x +2 = 0 #

Podemos resolver a expressão fatorizando primeiro.

Factorising por dividindo o termo do meio

# x ^ 2 + 3x +2 = 0 #

# x ^ 2 + 2x + x + 2 = 0 #

#x (x + 2) +1 (x + 2) = 0 #

#color (azul) ((x + 1) (x + 2) = 0 #

Equacionando os fatores com zero:

#color (azul) (x + 1 = 0, x = -1) #

#color (azul) (x + 2 = 0, x = -2 #

Responda:

x = -2 ou x = -1

Explicação:

Duas formas padrão para resolver uma equação quadrática:

Em primeiro lugar você poderia fatorizá-lo para o formulário:

# x ^ 2 + 3x + 2 = 0 #

# x ^ 2 + (a + b) x + ab = 0 #

# (x + a) (x + b) = 0 #

Portanto, precisamos de dois números que satisfaçam:

# a + b = 3 & ab = 2 #

# => a = 2; b = 1 #

Então a expressão é:

# (x + 2) (x + 1) = 0 #

É então trivial ver que se # x = -2 ou x = -1 # então a expressão é verdadeira. Essas são as soluções.

A outra solução é usar a fórmula para a solução de uma equação quadrática:

# a * x ^ 2 + b * x + c = 0 #

=>

#x = (- b + -sqrt (b ^ 2-4ac)) / (2a) #

# a = 1, b = 3, c = 2 # então nós temos:

#x = (- 3 + sqrt (9-8)) / 2 = -1 # ou #x = (- 3-sqrt (9-8)) / 2 = -2 #

As mesmas duas soluções