Aplicando
A definição de limite indica que quando x se aproxima de algum número, os valores estão se aproximando do número. Neste caso, você pode declarar matematicamente que
No entanto, se você tiver uma função como
Para provar isso, podemos usar
Essas equações afirmam que quando x se aproxima de 1 da direita da curva (
Aqui está uma representação gráfica:
gráfico {1 / (1-x) -10, 10, -5, 5}
No geral, quando se trata de limites, certifique-se de observar qualquer equação que tenha um zero no denominador (incluindo outros como
Ufa! Com certeza é muito, mas todos os detalhes são muito importantes para outras funções. Espero que isto ajude!
Qual é o limite quando t se aproxima de 0 de (tan6t) / (sin2t)?
Lim_ (t-> 0) tan (6t) / sin (2t) = 3. Determinamos isso utilizando a Regra de L'hospital. Parafraseando, a regra de L'Hospital afirma que quando é dado um limite da forma lim_ (t a) f (t) / g (t), onde f (a) eg (a) são valores que fazem com que o limite seja indeterminado (na maioria das vezes, se ambos forem 0, ou alguma forma de ), então, contanto que ambas as funções sejam contínuas e diferenciáveis na e na vizinhança de a, pode-se afirmar que lim_ (t a) f (t) / g (t) = lim_ (t a) (f '(t)) / (g' (t)) Ou em palavras, o limite do quociente de duas funç
Qual é o limite quando x se aproxima de 0 de 1 / x?
O limite não existe. Convencionalmente, o limite não existe, pois os limites direito e esquerdo discordam: lim_ (x-> 0 ^ +) 1 / x = + oo lim_ (x-> 0 ^ -) 1 / x = -oo graph {1 / x [-10, 10, -5, 5]} ... e não convencional? A descrição acima é provavelmente apropriada para usos normais onde adicionamos dois objetos + oo e -oo à linha real, mas essa não é a única opção. A linha projetiva real RR_oo adiciona apenas um ponto ao RR, rotulado oo. Você pode pensar em RR_oo como sendo o resultado de dobrar a linha real em torno de um círculo e adicionar um p
Qual é o limite quando x se aproxima de 1 de 5 / ((x-1) ^ 2)?
Eu diria oo; Em seu limite, você pode se aproximar de 1 da esquerda (x menor que 1) ou da direita (x maior que 1) e o denominador será sempre um número muito pequeno e positivo (devido à potência de dois) dando: lim_ ( x-> 1) (5 / (x-1) ^ 2) = 5 / (+ 0,0000 .... 1) = oo