Parafraseando, a regra de L'Hospital afirma que, quando dado um limite da forma
Ou, em palavras, o limite do quociente de duas funções é igual ao limite do quociente de suas derivadas.
No exemplo fornecido, temos
Portanto, devemos fazer uso da Regra de L'Hospital.
Responda:
O Reqd. Lim.
Explicação:
Nós vamos encontrar isso Limite usando o seguinte Resultados padrão:
Observe aquilo,
Aqui,
Similarmente,
Portanto, o Reqd. Lim.
Qual é o limite quando x se aproxima de 0 de 1 / x?
O limite não existe. Convencionalmente, o limite não existe, pois os limites direito e esquerdo discordam: lim_ (x-> 0 ^ +) 1 / x = + oo lim_ (x-> 0 ^ -) 1 / x = -oo graph {1 / x [-10, 10, -5, 5]} ... e não convencional? A descrição acima é provavelmente apropriada para usos normais onde adicionamos dois objetos + oo e -oo à linha real, mas essa não é a única opção. A linha projetiva real RR_oo adiciona apenas um ponto ao RR, rotulado oo. Você pode pensar em RR_oo como sendo o resultado de dobrar a linha real em torno de um círculo e adicionar um p
Qual é o limite quando x se aproxima de 1 de 5 / ((x-1) ^ 2)?
Eu diria oo; Em seu limite, você pode se aproximar de 1 da esquerda (x menor que 1) ou da direita (x maior que 1) e o denominador será sempre um número muito pequeno e positivo (devido à potência de dois) dando: lim_ ( x-> 1) (5 / (x-1) ^ 2) = 5 / (+ 0,0000 .... 1) = oo
Qual é o limite quando x se aproxima de 0 de tanx / x?
1 lim_ (x-> 0) tanx / x grafo {(tanx) / x [-20.27, 20.28, -10.14, 10.13]} A partir do gráfico, você pode ver que, como x-> 0, tanx / x se aproxima de 1