Responda:
Área do retângulo é
Explicação:
Deixe o perímetro do retângulo é
O comprimento de um retângulo é 3 vezes sua largura. Se o comprimento fosse aumentado em 2 polegadas e a largura em 1 polegada, o novo perímetro seria de 62 polegadas. Qual é a largura e o comprimento do retângulo?
O comprimento é 21 e a largura é 7 Ill uso l para comprimento e w para largura Primeiro é dado que l = 3w Novo comprimento e largura é l + 2 e w + 1 respectivamente Também novo perímetro é 62 Então, l + 2 + l + 2 + w + 1 + w + 1 = 62 ou, 2l + 2w = 56 l + w = 28 Agora temos duas relações entre l e w Substitui primeiro valor de l na segunda equação Nós obtemos, 3w + w = 28 4w = 28 w = 7 Colocando este valor de w em uma das equações, l = 3 * 7 l = 21 Então, o comprimento é 21 e a largura é 7
A soma dos dígitos de um número de dois dígitos é 14. A diferença entre o dígito das dezenas e o dígito das unidades é 2. Se x é o dígito das dezenas e y é o dígito das unidades, qual sistema de equações representa a palavra problema?
X + y = 14 xy = 2 e (possivelmente) "Número" = 10x + y Se x e y são dois dígitos e nos é dito que sua soma é 14: x + y = 14 Se a diferença entre o dígito das dezenas x e o dígito da unidade y é 2: xy = 2 Se x é o dígito das dezenas de um "Número" e y é o dígito das unidades: "Número" = 10x + y
O dígito das dezenas de um número de dois dígitos excede o dobro dos dígitos das unidades por 1. Se os dígitos forem invertidos, a soma do novo número e do número original é 143.Qual é o número original?
O número original é 94. Se um inteiro de dois dígitos tiver um dígito nas dezenas e b no dígito da unidade, o número será 10a + b. Seja x o dígito da unidade do número original. Então, o dígito das dezenas é 2x + 1, e o número é 10 (2x + 1) + x = 21x + 10. Se os dígitos estiverem invertidos, o dígito das dezenas é x e o dígito da unidade é 2x + 1. O número invertido é 10x + 2x + 1 = 12x + 1. Portanto, (21x + 10) + (12x + 1) = 143 33x + 11 = 143 33x = 132 x = 4 O número original é 21 * 4 + 10 = 94.