Responda:
Explicação:
Acho que por
Se for esse o caso, precisamos expandir o polinômio.
Pelas fórmulas de Vieta, o produto de uma equação quadrática
Assim,
Fonte:
en.wikipedia.org/wiki/Vieta%27s_formulas
As raízes da equação quadrática 2x ^ 2-4x + 5 = 0 são alfa (a) e beta (b). (a) Mostre que 2a ^ 3 = 3a-10 (b) Encontre a equação quadrática com raízes 2a / be 2b / a?
Ver abaixo. Primeiro, encontre as raízes de: 2x ^ 2-4x + 5 = 0 Usando a fórmula quadrática: x = (- (- 4) + - sqrt ((- 4) ^ 2-4 (2) (5))) / 4 x = (4 + -sqrt (-24)) / 4 x = (4 + -2isqrt (6)) / 4 = (2 + -isqrt (6)) / 2 alfa = (2 + isqrt (6)) / 2 beta = (2-isqrt (6)) / 2 a) 2a ^ 3 = 3a-10 2 ((2 + isqrt (6)) / 2) ^ 3 = 3 ((2 + isqrt (6)) / 2 ) -10 2 ((2 + isqrt (6)) / 2) ^ 3 = (2 (2 + isqrt (6)) (2 + isqrt (6)) (2 + isqrt (6))) / 8 = 2 * (- 28 + 6isqrt (6)) / 8 cores (azul) (= (- 14 + 3isqrt (6)) / 2) 3 ((2 + isqrt (6)) / 2) -10 = (6 + 3isqrt (6)) / 2-10 = (6 + 3isqrt (6) -20) / 2 cores (azul) (= (- 14 + 3isqrt (
Se a soma das raízes cúbicas da unidade for 0 Então prove que Produto de raízes cúbicas de unidade = 1 Alguém?
"Veja explicação" z ^ 3 - 1 = 0 "é a equação que produz as raízes cúbicas de" "unidade. Então podemos aplicar a teoria de polinômios para" "concluir que" z_1 * z_2 * z_3 = 1 "(identidades de Newton ). " "Se você realmente quiser calcular e verificar:" z ^ 3 - 1 = (z - 1) (z ^ 2 + z + 1) = 0 => z = 1 "OU" z ^ 2 + z + 1 = 0 => z = 1 "OR" z = (-1 pm sqrt (3) i) / 2 => (z_1) * (z_2) * (z_3) = 1 * ((- 1 + sqrt (3) i ) / 2) * (- 1-sqrt (3) i) / 2 = 1 * (1 + 3) / 4 = 1
Q.1 Se alfa, beta são as raízes da equação x ^ 2-2x + 3 = 0 obtenha a equação cujas raízes são alfa ^ 3-3 alfa ^ 2 + 5 alfa -2 e beta ^ 3-beta ^ 2 + beta + 5?
Q.1 Se alfa, beta são as raízes da equação x ^ 2-2x + 3 = 0 obtenha a equação cujas raízes são alfa ^ 3-3 alfa ^ 2 + 5 alfa -2 e beta ^ 3-beta ^ 2 + beta + 5? Resposta dada a equação x ^ 2-2x + 3 = 0 => x = (2pmsqrt (2 ^ 2-4 * 1 * 3)) / 2 = 1pmsqrt2i Vamos alfa = 1 + sqrt2i e beta = 1-sqrt2i Agora vamos gamma = alfa ^ 3-3 alfa ^ 2 + 5 alfa -2 => gama = alfa ^ 3-3 alfa ^ 2 + 3 alfa -1 + 2alfa-1 => gama = (alfa-1) ^ 3 + alfa-1 + alpha => gamma = (sqrt2i) ^ 3 + sqrt2i + 1 + sqrt2i => gamma = -2sqrt2i + sqrt2i + 1 + sqrt2i = 1 E deixe delta = beta ^ 3-beta ^ 2 +