Responda:
Explicação:
Triângulo ABC é um triângulo 3-4-5 - podemos ver isso usando o Teorema de Pitágoras:
Então agora queremos encontrar o perímetro de um triângulo que tenha lados duas vezes maior que o ABC:
A hipotenusa de um triângulo retângulo é de 10 polegadas. Os comprimentos das duas pernas são dados por 2 inteiros pares consecutivos. Como você encontra o comprimento das duas pernas?
6,8 A primeira coisa a abordar aqui é como expressar "dois inteiros pares consecutivos" algebricamente. 2x dará um inteiro par se x também for um inteiro. O próximo inteiro par, após 2x, seria 2x + 2. Podemos usá-los como os comprimentos de nossas pernas, mas devemos lembrar que isso só será válido se x for um número inteiro (positivo). Aplique o teorema de Pitágoras: (2x) ^ 2 + (2x + 2) ^ 2 = 10 ^ 2 4x ^ 2 + 4x ^ 2 + 8x + 4 = 100 8x ^ 2 + 8x-96 = 0 x ^ 2 + x- 12 = 0 (x + 4) (x-3) = 0 x = -4,3 Assim, x = 3 uma vez que os comprimentos laterais do triângul
O perímetro de um triângulo é de 29 mm. O comprimento do primeiro lado é o dobro do comprimento do segundo lado. O comprimento do terceiro lado é 5 mais que o comprimento do segundo lado. Como você encontra os comprimentos laterais do triângulo?
S_1 = 12 s_2 = 6 s_3 = 11 O perímetro de um triângulo é a soma dos comprimentos de todos os seus lados. Neste caso, é dado que o perímetro é de 29 mm. Então, para este caso: s_1 + s_2 + s_3 = 29 Resolvendo assim o comprimento dos lados, traduzimos as declarações no dado para a equação. "O comprimento do primeiro lado é duas vezes o comprimento do segundo lado" Para resolver isso, atribuímos uma variável aleatória a s_1 ou s_2. Para este exemplo, eu deixaria x ser o comprimento do segundo lado para evitar frações na minha equa
Dois triângulos isósceles têm o mesmo comprimento de base. As pernas de um dos triângulos são duas vezes maiores que as pernas do outro. Como você encontra o comprimento dos lados dos triângulos se seus perímetros são 23 cm e 41 cm?
Cada passo mostrado é um pouco longo. Pule as partes que você conhece. A base é 5 para ambas As pernas menores são 9 cada Uma das pernas longas tem 18 cada Às vezes, um esboço rápido ajuda a identificar o que fazer Para o triângulo 1 -> a + 2b = 23 "" ........... .... Equação (1) Para o triângulo 2 -> a + 4b = 41 "" ............... Equação (2) ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ cor (azul) ("Determine o valor de" b) Para a equação (1) subtraia 2b de ambos os lados dando : a = 23-2b "" ................