Responda:
Explicação:
Nós consideramos o GP infinito
Sabemos que, para isso GP, a soma de seus infinito não. de termos é
o série infinita dos quais, o termos são as praças do
termos do primeiro GP é,
Percebemos que isso também é um Geom. Series, dos quais o
primeiro termo é
Portanto, o soma de seus infinito não. de termos É dado por,
O primeiro e o segundo termos de uma sequência geométrica são respectivamente o primeiro e o terceiro termos de uma sequência linear. O quarto termo da sequência linear é 10 e a soma dos seus cinco primeiros termos é 60 Encontre os primeiros cinco termos da sequência linear?
{16, 14, 12, 10, 8} Uma sequência geométrica típica pode ser representada como c_0a, c_0a ^ 2, cdots, c_0a ^ k e uma sequência aritmética típica como c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Chamando c_0 a como o primeiro elemento para a sequência geométrica que temos {(c_0 a ^ 2 = c_0a + 2Delta -> "Primeiro e segundo de GS são o primeiro e o terceiro de um LS"), (c_0a + 3Delta = 10- > "O quarto termo da seqüência linear é 10"), (5c_0a + 10Delta = 60 -> "A soma do seu primeiro cinco termo é 60"):} Resolven
O comprimento de cada lado do quadrado A é aumentado em 100 por cento para fazer o quadrado B. Em seguida, cada lado do quadrado é aumentado em 50 por cento para fazer o quadrado C. Por que porcentagem é a área do quadrado C maior que a soma das áreas de quadrado A e B?
A área de C é 80% maior que a área de A + área de B Define como uma unidade de medida o comprimento de um lado de A. Área de A = 1 ^ 2 = 1 sq.unit O comprimento dos lados de B é 100% mais que comprimento dos lados de A rarr Comprimento dos lados de B = 2 unidades Área de B = 2 ^ 2 = 4 unidades quadradas. O comprimento dos lados de C é 50% maior que o comprimento dos lados de B rr Comprimento dos lados de C = 3 unidades Área de C = 3 ^ 2 = 9 unidades quadradas Área de C é 9- (1 + 4) = 4 Unidades quadradas maiores que as áreas combinadas de A e B. 4 unidades quadrad
A soma dos primeiros quatro termos de um GP é 30 e dos últimos quatro termos é 960. Se o primeiro e o último termo do GP forem 2 e 512, respectivamente, encontre a proporção comum.
2 raiz (3) 2. Suponha que a razão comum (cr) do GP em questão seja r e n ^ (th) term seja o último termo. Dado que, o primeiro termo do GP é 2.: "O GP é" {2,2r, 2r ^ 2,2r ^ 3, .., 2r ^ (n-4), 2r ^ (n-3) , 2r ^ (n-2), 2r ^ (n-1)}. Dado, 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (estrela ^ 1) e, 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) + 2r ^ (n-1) = 960 ... (estrela ^ 2). Também sabemos que o último termo é 512.:. r ^ (n-1) = 512 .................... (estrela ^ 3). Agora, (estrela ^ 2) rArr ^ (n-4) (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960, isto é, (r ^ (n-1)) / r ^ 3 (2 + 2r + 2r ^ 2 + 2r