Meia vida:
A resposta é aproximadamente
Sob condições ideais, uma população de coelhos tem uma taxa de crescimento exponencial de 11,5% por dia. Considere uma população inicial de 900 coelhos, como você encontra a função de crescimento?
F (x) = 900 (1,115) ^ x A função de crescimento exponencial aqui assume a forma y = a (b ^ x), b> 1, a representa o valor inicial, b representa a taxa de crescimento, x é o tempo decorrido em dias. Nesse caso, recebemos um valor inicial de a = 900. Além disso, somos informados de que a taxa de crescimento diária é de 11,5%. Bem, em equilíbrio, a taxa de crescimento é de zero por cento, ou seja, a população permanece inalterada em 100%. Neste caso, no entanto, a população cresce em 11,5% do equilíbrio para (100 + 11,5)%, ou 111,5% Reescrita como um decimal,
Eu realmente não entendo como fazer isso, alguém pode fazer um passo a passo ?: O gráfico de decaimento exponencial mostra a depreciação esperada para um novo barco, vendendo para 3500, ao longo de 10 anos. -Escreva uma função exponencial para o gráfico -Utilize a função para encontrar
F (x) = 3500e ^ (- (ln (3/7) x) / 3) f (x) = 3500e ^ (- 0,2824326201x) f (x) = 3500e ^ (- 0,28x) Eu só posso fazer o primeira pergunta desde que o resto foi cortado. Temos a = a_0e ^ (- bx) Com base no gráfico, parece-nos ter (3,1500) 1500 = 3500e ^ (-3b) e ^ (-3b) = 1500/3500 = 3/7 -3b = ln ( 3/7) b = -ln (3/7) /3=-0.2824326201 ~~ 0,28 f (x) = 3500e ^ (- (ln (3/7) x) / 3) f (x) = 3500e ^ (-0,2824326201x) f (x) = 3500e ^ (- 0,28x)
Sua gaveta de meias é uma bagunça e contém 8 meias brancas, 6 meias pretas e 4 meias vermelhas. Qual é a probabilidade de que a primeira meia que você tira será preta e a segunda meia que você tira sem substituir a primeira meia será preta?
1 / 3,5 / 17> "Probabilidade de um evento" é. cor (vermelho) (barra (ul (| cor (branco) (2/2) cor (preto) (("número de resultados favoráveis") / ("número total de resultados possíveis")) cor (branco) (2 / 2) |))) "aqui o resultado favorável é retirar uma meia preta" da qual existem 6. "número de resultados possíveis" = 8 + 6 + 4 = 18 rArrP ("meia preta") = 6/18 = 1 / 3 Sem meios de substituição, há agora um total de 17 meias, das quais 5 serão pretas. rArrP ("segunda meia preta") = 5/17