Responda:
Explicação:
Para uma determinada função
Seja f uma função contínua: a) Encontre f (4) se _0 ^ (x ^ 2) f (t) dt = x sen πx para todo x. b) Encontre f (4) se _0 ^ f (x) t ^ 2 dt = x sen πx para todo x?
A) f (4) = pi / 2; b) f (4) = 0 a) Diferencie os dois lados. Através do Segundo Teorema Fundamental do Cálculo no lado esquerdo e as regras do produto e da cadeia no lado direito, vemos que a diferenciação revela que: f (x ^ 2) * 2x = sin (pix) + pixcos (pix ) Deixando x = 2 mostra que f (4) * 4 = sen (2pi) + 2picos (2pi) f (4) * 4 = 0 + 2pi * 1 f (4) = pi / 2 b) Integre o termo interior. int_0 ^ f (x) t ^ 2dt = xsin (pix) [t ^ 3/3] _0 ^ f (x) = xsin (pix) Avaliar. (f (x)) ^ 3 / 3-0 ^ 3/3 = xsin (pix) (f (x)) ^ 3/3 = xsin (pix) (f (x)) ^ 3 = 3xsin (pix) Deixe x = 4. (f (4)) ^ 3 = 3 (4) sen (4pi) (f (4))
X.: 1. 3. 6. 7 P (X): 0.35. Y 0.15. 0.2 Encontre o valor de y? Encontre a média (valor esperado)? Encontre o desvio padrão?
Prove que Berço 4x (sen 5 x + sen 3 x) = Berço x (sen 5 x - sen 3 x)?
# sen a + sen b = 2 sen ((a + b) / 2) cos ((ab) / 2) sen a - sen b = 2 sen ((ab) / 2) cos ((a + b) / 2 ) Lado direito: berço x (sen 5x - sen 3x) = berço x cdot 2 sen ((5x-3x) / 2) cos ((5x + 3x) / 2) = cos x / sin x cdot 2 sin x cos 4x = 2 cos x cos 4x Lado esquerdo: cot (4x) (sen 5x + sin 3x) = cot (4x) cdot 2 sen ((5x + 3x) / 2) cos ((5x-3x) / 2) = {cos 4x} / {sen 4x} cdot 2 sen 4 x cos x = 2 cos x cos 4 x Eles são iguais ao quad sqrt #