Lado direito:
Lado esquerdo:
São iguais
Responda:
Fórmula de fator (identidades de soma a produto e de produto a soma)
Explicação:
Para esta pergunta, podemos usar o Soma-para-Produto e Produto-a-soma identidades.
Eu sou preguiçoso, então aqui está uma foto das identidades.
A fórmula do produto até a soma acima pode ser derivada por meio de identidades de ângulo composto.
Usando a substituição
Então, agora que resolvemos isso, vamos aplicar nossas fórmulas.
Como alternativa, você também pode aplicar a fórmula de soma ao produto no lado direito:
Sabe-se que a equação bx ^ 2- (a-3b) x + b = 0 tem uma raiz real. Prove que a equação x ^ 2 + (a-b) x + (ab-b ^ 2 + 1) = 0 não tem raízes reais.
Ver abaixo. As raízes para bx ^ 2- (a-3b) x + b = 0 são x = (a - 3 b pmsqrt [a ^ 2 - 6 ab + 5 b ^ 2]) / (2 b) As raízes serão coincidentes e real se a ^ 2 - 6 ab + 5 b ^ 2 = (a - 5 b) (a - b) = 0 ou a = b ou a = 5b Agora resolvendo x ^ 2 + (ab) x + (ab-b ^ 2 + 1) = 0 temos x = 1/2 (-a + bpm sqrt [a ^ 2 - 6 ab + 5 bf 2-4]) A condição para raízes complexas é a ^ 2 - 6 ab + 5 b ^ 2-4 lt 0 agora fazendo a = b ou a = 5b temos um ^ 2 - 6 ab + 5 b ^ 2-4 = -4 <0 Concluindo, se bx ^ 2- (a-3b) x + b = 0 tem raízes reais coincidentes então x ^ 2 + (ab) x + (ab-b ^ 2 + 1) = 0 ter
Seja f (x) = x-1. 1) Verifique se f (x) não é nem ímpar nem impar. 2) Pode f (x) ser escrito como a soma de uma função par e uma função ímpar? a) Se sim, exiba uma solução. Existem mais soluções? b) Se não, prove que é impossível.
Seja f (x) = | x -1 |. Se f fosse par, então f (-x) seria igual a f (x) para todo x. Se f fosse ímpar, então f (-x) seria igual a -f (x) para todo x. Observe que para x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Como 0 não é igual a 2 ou a -2, f não é nem ímpar nem par. Pode ser escrito como g (x) + h (x), onde g é par e h é ímpar? Se isso fosse verdade, então g (x) + h (x) = | x - 1 | Chame essa instrução 1. Substitua x por -x. g (-x) + h (-x) = | -x - 1 | Como g é par e h é ímpar, temos: g (x) - h (x) = | -x - 1 | Chame essa afirmaç&
Prove que berço (A / 2) - 3cot ((3A) / 2) = (4sinA) / (1 + 2cosA)?
Por favor, consulte a Explicação. Sabemos que tan3theta = (3tantheta-tan ^ 3theta) / (1-3tan ^ 2theta). : cot3theta = 1 / (tan3theta) = (1-3tan ^ 2theta) / (3tantheta-tan ^ 3theta): .cot ((3A) / 2) = {1-3tan ^ 2 (A / 2)} / {3tan ( A / 2) -tan ^ 3 (A / 2)}. Deixando tan (A / 2) = t, temos, berço (A / 2) -3cot ((3A) / 2), = 1 / t-3 {(1-3t ^ 2) / (3t-t ^ 3 )}, 1 / t- {3 (1-3t ^ 2)} / {t (3-t ^ 2)}, = {(3-t ^ 2) -3 (1-3t ^ 2)} / { t (3-t ^ 2)}, = (8t ^ cancelar (2)) / {cancelar (t) (3-t ^ 2)}, = (8t) / {(1 + t ^ 2) +2 ( 1-t ^ 2)} = {4 * (2t) / (1 + t ^ 2)} / {(1 + t ^ 2) / (1 + t ^ 2) + 2 * (1-t ^ 2) / (1 + t ^