Em f (x) = ln (cos (x)), temos uma função de uma função (não é multiplicação, apenas dizendo), então precisamos usar a regra da cadeia para derivadas:
# d / dx (f (g (x)) = f '(g (x)) * g' (x) #
Para este problema, com f (x) = ln (x) e g (x) = cos (x), temos f '(x) = 1 / x e g' (x) = - sin (x), então nós conectamos g (x) na fórmula para f '(*).
# d / dx (ln (cos (x))) = 1 / (cos (x)) * d / dx (cos (x)) #
# = (1) / (cos (x)) * (- sin (x)) #
# = (- sin (x)) / cos (x) = - tan (x). #
Vale lembrar disso para mais tarde, quando você aprender sobre integrais!
Diga-lhes que o dansmath respondeu à sua pergunta!
Mostre que cos² / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Estou um pouco confuso se eu fizer Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), ele vai se tornar negativo como cos (180 ° -teta) = - costheta em o segundo quadrante. Como faço para provar a questão?
Por favor veja abaixo. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sen ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Qual é a primeira derivada e segunda derivada de 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(a primeira derivada)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(a segunda derivada)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (d) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(a primeira derivada)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(a segunda derivada)"
Qual é a segunda derivada de x / (x-1) e a primeira derivada de 2 / x?
Questão 1 Se f (x) = (g (x)) / (h (x)) então pela Regra do Quociente f '(x) = (g' (x) * h (x) - g (x) * h '(x)) / ((g (x)) ^ 2) Então se f (x) = x / (x-1) então a primeira derivada f' (x) = ((1) (x-1) - (x) (1)) / x ^ 2 = - 1 / x ^ 2 = - x ^ (- 2) e a segunda derivada é f '' (x) = 2x ^ -3 Pergunta 2 Se f (x) = 2 / x isso pode ser reescrito como f (x) = 2x ^ -1 e usando procedimentos padrão para obter a derivada f '(x) = -2x ^ -2 ou, se você preferir f' (x) = - 2 / x ^ 2