Qual é o limite de (2x-1) / (4x ^ 2-1) quando x se aproxima de -1/2?

Qual é o limite de (2x-1) / (4x ^ 2-1) quando x se aproxima de -1/2?
Anonim

#lim_ {x para -1/2} {2x-1} / {4x ^ 2-1} # não existe.

Vamos avaliar o limite da esquerda.

#lim_ {x para -1/2 "^ -} {2x-1} / {4x ^ 2-1} #

fatorando o denominador, # = lim_ {x para -1/2 "^ -} {2x-1} / {(2x-1) (2x + 1)} #

cancelando # (2x-1) #é, # = lim_ {x para -1/2 "^ -} 1 / {2x + 1} = 1 / {0 ^ -} = -infty #

Vamos avaliar o limite da direita.

#lim_ {x para -1/2 "^ +} {2x-1} / {4x ^ 2-1} #

fatorando o denominador, # = lim_ {x para -1/2 "^ +} {2x-1} / {(2x-1) (2x + 1)} #

cancelando # (2x-1) #é, # = lim_ {x para -1/2 "^ +} 1 / {2x + 1} = 1 / {0 ^ +} = + infty #

Conseqüentemente, #lim_ {x para -1/2} {2x-1} / {4x ^ 2-1} # não existe.