Responda:
Existe um mínimo local de
Explicação:
Para
Então encontre
# = (lnx (2-lnx)) / x ^ 2 # .
Teste os intervalos
(Para números de teste, sugiro
Nós achamos que
e essa
Quais são os extremos locais, se houver, de f (x) = 2ln (x ^ 2 + 3) -x?
F (x) = 2ln (x ^ 2 + 3) -x tem um mínimo local para x = 1 e um máximo local para x = 3 Temos: f (x) = 2ln (x ^ 2 + 3) -x função é definida em todo RR como x ^ 2 + 3> 0 AA x Podemos identificar os pontos críticos encontrando onde a primeira derivada é igual a zero: f '(x) = (4x) / (x ^ 2 + 3) - 1 = - (x ^ 2-4x + 3) / (x ^ 2 + 3) - (x ^ 2-4x + 3) / (x ^ 2 + 3) = 0 x ^ 2-4x + 3 = 0 x = 2 + -sqrt (4-3) = 2 + -1 então os pontos críticos são: x_1 = 1 e x_2 = 3 Dado que o denominador é sempre positivo, o sinal de f '(x) é o oposto do sinal de o numerador (x ^
Quais são os extremos locais, se houver, de f (x) = a (x-2) (x-3) (x-b), onde aeb são inteiros?
F (x) = a (x-2) (x-3) (xb) Os extremos locais obedecem (df) / dx = a (6 + 5 b - 2 (5 + b) x + 3 x ^ 2) = 0 Agora, se um ne 0 nós temos x = 1/3 (5 + bpm sqrt [7 - 5 b + b ^ 2]) mas 7 - 5 b + b ^ 2 gt 0 (tem raízes complexas) então f ( x) tem sempre um mínimo local e um máximo local. Supondo que um ne 0
Quais são os extremos locais, se houver, de f (x) = (lnx-1) ^ 2 / x?
(e ^ 3, 4e ^ -3) Ponto Máximo (e, 0) Ponto Mínimo