Responda:
Explicação:
A primeira coisa a abordar aqui é como expressar "dois inteiros pares consecutivos" algebricamente.
Aplique o teorema de Pitágoras:
# (2x) ^ 2 + (2x + 2) ^ 2 = 10 ^ 2 #
# 4x ^ 2 + 4x ^ 2 + 8x + 4 = 100 #
# 8x ^ 2 + 8x-96 = 0 #
# x ^ 2 + x-12 = 0 #
# (x + 4) (x-3) = 0 #
# x = -4,3 #
Portanto,
As pernas estão
# 2rr6 #
# 2x + 2rArr8 #
# "hipotenusa" rArr10 #
Uma maneira mais intuitiva de fazer isso é reconhecer que um
As pernas do triângulo retângulo ABC têm comprimentos 3 e 4. Qual é o perímetro de um triângulo retângulo com cada lado duas vezes o comprimento do seu lado correspondente no triângulo ABC?
2 (3) +2 (4) +2 (5) = 24 Triângulo ABC é um triângulo 3-4-5 - podemos ver isso usando o Teorema de Pitágoras: a ^ 2 + b ^ 2 = c ^ 2 3 ^ 2 + 4 ^ 2 = 5 ^ 2 9 + 16 = 25 25 = 25 cor (branco) (00) cor (verde) raiz Então agora queremos encontrar o perímetro de um triângulo que tenha lados duas vezes maior que ABC: 2 ( 3) +2 (4) +2 (5) = 6 + 8 + 10 = 24
A perna mais longa de um triângulo retângulo é 3 polegadas mais que 3 vezes o comprimento da perna mais curta. A área do triângulo é de 84 polegadas quadradas. Como você encontra o perímetro de um triângulo retângulo?
P = 56 polegadas quadradas. Veja a figura abaixo para melhor compreensão. c = 3b + 3 (bc) / 2 = 84 (b. (3b + 3)) / 2 = 84 3b ^ 2 + 3b = 84xx2 3b ^ 2 + 3b-168 = 0 Resolvendo a equação quadrática: b_1 = 7 b_2 = -8 (impossível) Assim, b = 7 c = 3xx7 + 3 = 24 a ^ 2 = 7 ^ 2 + 24 ^ 2 a ^ 2 = 625 a = sqrt (625) = 25 P = 7 + 24 + 25 = 56 polegadas quadradas
A largura e o comprimento de um retângulo são números inteiros pares consecutivos. Se a largura é diminuída em 3 polegadas. então a área do retângulo resultante é de 24 polegadas quadradas. Qual é a área do retângulo original?
48 "polegadas quadradas" "deixa a largura" = n "então comprimento" = n + 2 n "e" n + 2color (azul) "são inteiros pares consecutivos" "a largura é diminuída por" 3 "polegadas largura" rArr " "= n-3" área "=" comprimento "xx" largura "rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArr ^ 2-n-30 = 0larrcolor (azul) "na forma padrão" "os fatores de - 30 que somam - 1 são + 5 e - 6" rArr (n-6) (n + 5) = 0 "igualam cada fator a zero e resolvem para n" n-6 = 0rA