Qual é o ortocentro de um triângulo com cantos em (7, 8), (3, 4) e (8, 3) #?

Qual é o ortocentro de um triângulo com cantos em (7, 8), (3, 4) e (8, 3) #?
Anonim

Deixe as coordenadas de três vértices do triângulo ABC ser

#A -> (7,8) "" B -> (3,4) "" C -> (8,3) #

Deixe a coordenada do#color (vermelho) ("Ortho center O" -> (h, k)) #

#m_ (AB) -> "Inclinação de AB" = ((8-4)) / ((7-3)) = 1 #

#m_ (BC) -> "Inclinação de BC" = ((4-3)) / ((3-8)) = - 1/5 #

#m_ (CO) -> "Inclinação de CO" = ((k-3)) / ((h-8)) #

#m_ (AO) -> "Inclinação do AO" = ((k-8)) / ((h-7)) #

Sendo ortocentro, a linha reta que passa por C e O será perpendicular a AB, assim #m_ (CO) xxm_ (AB) = - 1 #

# => ((k-3)) / ((h-8)) xx 1 = -1 #

# => k = -h + 11 …. (1) #

Sendo ortocentro, a reta que passa por A e O será perpendicular a BC.

assim #m_ (AO) xxm_ (BC) = - 1 #

# => ((k-8)) / ((h-7)) xx (- 1/5) = - 1 #

# => k = 5h-27 …. (2) #

Comparando (1) e (2)

# 5h-27 = -h + 11 #

# => 6h = 38 #

# => h = 6 1/3 #

Inserindo o valor de h em (1)

# k = -6 1/3 + 11 = 4 2/3 #

Portanto, a coordenada do ortocentro é

#color (verde) ((6 1/3 "," 4 2/3)) #