Responda:
Área do trapézio
Explicação:
A área de um trapézio é
Onde
em outras palavras, a Área de um Trapézio é a "Média das Bases vezes a Altura".
nesse caso,
e
o que nos dá
* nota: os "comprimentos laterais" são informações desnecessárias
O perímetro de um triângulo é de 29 mm. O comprimento do primeiro lado é o dobro do comprimento do segundo lado. O comprimento do terceiro lado é 5 mais que o comprimento do segundo lado. Como você encontra os comprimentos laterais do triângulo?
S_1 = 12 s_2 = 6 s_3 = 11 O perímetro de um triângulo é a soma dos comprimentos de todos os seus lados. Neste caso, é dado que o perímetro é de 29 mm. Então, para este caso: s_1 + s_2 + s_3 = 29 Resolvendo assim o comprimento dos lados, traduzimos as declarações no dado para a equação. "O comprimento do primeiro lado é duas vezes o comprimento do segundo lado" Para resolver isso, atribuímos uma variável aleatória a s_1 ou s_2. Para este exemplo, eu deixaria x ser o comprimento do segundo lado para evitar frações na minha equa
O PERÍMETRO do trapézio isósceles ABCD é igual a 80cm. O comprimento da linha AB é 4 vezes maior que o comprimento de uma linha CD que é 2/5 o comprimento da linha BC (ou as linhas que são as mesmas em comprimento). Qual é a área do trapézio?
A área do trapézio é de 320 cm ^ 2. Deixe o trapézio ser como mostrado abaixo: Aqui, se assumirmos lado menor CD = a e maior lado AB = 4a e BC = a / (2/5) = (5a) / 2. Como tal BC = AD = (5a) / 2, CD = ae AB = 4a Assim, o perímetro é (5a) / 2xx2 + a + 4a = 10a Mas o perímetro é de 80 cm. Portanto, a = 8 cm. e dois lados paralelos mostrados como aeb são 8 cm. e 32 cm. Agora, desenhamos perpendiculares de C e D para AB, que formam dois triângulos retos iguais, cuja hipotenusa é 5 / 2xx8 = 20 cm. e base é (4xx8-8) / 2 = 12 e, portanto, sua altura é sqrt (20 ^ 2-
Os comprimentos de dois lados paralelos de um trapézio são 10 cm e 15 cm. Os comprimentos dos outros dois lados são de 4 cm e 6 cm. Como você vai descobrir a área e as magnitudes de 4 ângulos do trapézio?
Então, a partir da figura, sabemos: h ^ 2 + x ^ 2 = 16 ................ (1) h ^ 2 + y ^ 2 = 36 .... ............ (2) e, x + y = 5 ................ (3) (1) - (2) => (x + y) (xy) = -20 => yx = 4 (usando eq. (3)) ..... (4) so, y = 9/2 e x = 1/2 e assim, h = sqrt63 / 2 A partir desses parâmetros, a área e os ângulos do trapézio podem ser obtidos facilmente.