Deixe a diferença comum de um AP de inteiros ser
Quaisquer quatro termos consecutivos da progressão podem ser representados como
Então a soma dos produtos desses quatro termos e quarto poder da diferença comum
O segundo, sexto e oitavo termos de uma progressão aritmética são três termos sucessivos de um Geometric.P. Como encontrar a razão comum de G.P e obter uma expressão para o enésimo termo do G.P?
Meu método resolve isso! Reescrita total r = 1/2 "" => "" a_n = a_1 (1/2) ^ (n-1) Para fazer a diferença entre as duas seqüências óbvio, estou usando a seguinte notação: a_2 = a_1 + d "" -> "" tr ^ 0 "" ............... Eqn (1) a_6 = a_1 + 5d "" -> "" tr "" ........ ........ Eqn (2) a_8 = a_1 + 7d "" -> "" tr ^ 2 "" ............... Eqn (3) ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Eqn (2) -Eqn (1) a_1 + 5d = tr ul (a_1 + cor (branco) (5) d = t larr "Subtrair&quo
O primeiro e o segundo termos de uma sequência geométrica são respectivamente o primeiro e o terceiro termos de uma sequência linear. O quarto termo da sequência linear é 10 e a soma dos seus cinco primeiros termos é 60 Encontre os primeiros cinco termos da sequência linear?
{16, 14, 12, 10, 8} Uma sequência geométrica típica pode ser representada como c_0a, c_0a ^ 2, cdots, c_0a ^ k e uma sequência aritmética típica como c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Chamando c_0 a como o primeiro elemento para a sequência geométrica que temos {(c_0 a ^ 2 = c_0a + 2Delta -> "Primeiro e segundo de GS são o primeiro e o terceiro de um LS"), (c_0a + 3Delta = 10- > "O quarto termo da seqüência linear é 10"), (5c_0a + 10Delta = 60 -> "A soma do seu primeiro cinco termo é 60"):} Resolven
Os primeiros quatro termos de uma sequência aritmética são 21 17 13 9 Encontre em termos de n, uma expressão para o enésimo termo desta seqüência?
O primeiro termo na sequência é a_1 = 21. A diferença comum na sequência é d = -4. Você deve ter uma fórmula para o termo geral, a_n, em termos do primeiro termo e da diferença comum.