Se um projétil é disparado em um ângulo de (7pi) / 12 e a uma velocidade de 2 m / s, quando atingirá sua altura máxima?

Se um projétil é disparado em um ângulo de (7pi) / 12 e a uma velocidade de 2 m / s, quando atingirá sua altura máxima?
Anonim

Responda:

Tempo # t = (5sqrt6 + 5sqrt2) /98=0.1971277197 "" #segundo

Explicação:

Para o deslocamento vertical # y #

# y = v_0 sin teta * t + 1/2 * g * t ^ 2 #

Nós maximizamos o deslocamento # y # em relação a # t #

# dy / dt = v_0 sen teta * dt / dt + 1/2 * g * 2 * t ^ (2-1) * dt / dt #

# dy / dt = v_0 sin teta + g * t #

conjunto # dy / dt = 0 # então resolva para # t #

# v_0 sin theta + g * t = 0 #

#t = (- v_0 sin theta) / g #

#t = (- 2 * sin ((7pi) / 12)) / (- 9.8) #

Nota: #sin ((7pi) / 12) = sin ((5pi) / 12) = (sqrt (6) + sqrt (2)) / 4 #

#t = (- 2 * ((sqrt (6) + sqrt (2))) / 4) / (- 9.8) #

# t = (5sqrt6 + 5sqrt2) /98=0.1971277197 "" #segundo

Deus abençoe … Espero que a explicação seja útil.