Responda:
Sim, é linear.
Explicação:
Existem cinco condições que devem ser atendidas para que uma equação ou função seja linear.
1) Nenhuma variável pode ter um expoente diferente do compreendido
2) Nenhum termo pode ter mais uma variável.
3) Nenhuma variável pode fazer parte do denominador de uma fração.
4) Nenhuma variável pode estar dentro de linhas de valor absoluto.
5) Nenhuma variável pode fazer parte de um radicand.
Desde a
A função p = n (1 + r) ^ t dá a população atual de uma cidade com uma taxa de crescimento de r, t anos após a população ser n. Qual função pode ser usada para determinar a população de qualquer cidade que tivesse uma população de 500 pessoas há 20 anos?
População seria dada por P = 500 (1 + r) ^ 20 Como a população há 20 anos era 500 taxa de crescimento (da cidade é r (em frações - se é r% torná-lo r / 100) e agora (ou seja, 20 anos depois, a população seria dada por P = 500 (1 + r) ^ 20
O gráfico da função f (x) = (x + 2) (x + 6) é mostrado abaixo. Qual afirmação sobre a função é verdadeira? A função é positiva para todos os valores reais de x, onde x> -4. A função é negativa para todos os valores reais de x onde –6 <x <–2.
A função é negativa para todos os valores reais de x onde –6 <x <–2.
Seja f uma função linear tal que f (-1) = - 2 e f (1) = 4. Encontre uma equação para a função linear f e então represente y = f (x) na grade de coordenadas?
Y = 3x + 1 Como f é uma função linear, isto é, uma linha, tal que f (-1) = - 2 ef (1) = 4, isso significa que ela passa por (-1, -2) e (1,4 ) Note que apenas uma linha pode passar através de dois pontos e se os pontos são (x_1, y_1) e (x_2, y_2), a equação é (x-x_1) / (x_2-x_1) = (y-y_1) / (y_2-y_1) e, portanto, a equação da linha que passa por (-1, -2) e (1,4) é (x - (- 1)) / (1 - (- 1)) = (y - (- 2 )) / (4 - (- 2)) ou (x + 1) / 2 = (y + 2) / 6 ed multiplicando por 6 ou 3 (x + 1) = y + 2 ou y = 3x + 1