Responda:
Números são
Explicação:
Deixe os números serem
Como soma de dois menores, ou seja
ou
ou
ou
isto é
e números são
O produto de dois inteiros ímpares consecutivos é 29 menor que 8 vezes sua soma. Encontre os dois inteiros. Resposta na forma de pontos emparelhados com o mais baixo dos dois inteiros primeiro?
(13, 15) ou (1, 3) Sejam x e x + 2 os números ímpares consecutivos, então Conforme a pergunta, temos (x) (x + 2) = 8 (x + x + 2) - 29 : x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 ou 1 Agora, CASO I: x = 13:. x + 2 = 13 + 2 = 15:. Os números são (13, 15). CASO II: x = 1:. x + 2 = 1+ 2 = 3:. Os números são (1, 3). Portanto, como há dois casos sendo formados aqui; o par de números pode ser ambos (13, 15) ou (1, 3).
A soma de quatro inteiros ímpares consecutivos é três mais do que 5 vezes o menor dos inteiros, quais são os inteiros?
N -> {9,11,13,15} cor (azul) ("Construindo as equações") Deixe o primeiro termo ímpar ser n Deixe a soma de todos os termos ser s Então o termo 1-> n termo 2-> n +2 termo 3-> n + 4 termo 4-> n + 6 Então s = 4n + 12 ............................ ..... (1) Dado que s = 3 + 5n .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Equação (1) a (2) removendo assim o variável s 4n + 12 = s = 3 + 5n Coletando termos semelhantes 5n-4n = 12-3 n = 9 '~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ Assim, os termos são: termo 1-> n-> 9 termo 2-&
Dois inteiros ímpares consecutivos têm uma soma de 48, quais são os dois inteiros ímpares?
23 e 25 juntos somam 48. Você pode pensar em dois inteiros ímpares consecutivos como sendo valor xex + 2. x é o menor dos dois, e x + 2 é 2 mais que (1 mais do que seria par). Podemos agora usar isso em uma equação de álgebra: (x) + (x + 2) = 48 Consolidar lado esquerdo: 2x + 2 = 48 Subtrair 2 de ambos os lados: 2x = 46 Divida ambos os lados por 2: x = 23 Agora, sabendo que o número menor era xex = 23, podemos conectar 23 em x + 2 e obter 25. Outra maneira de resolver isso requer um pouco de intuição. Se dividirmos 48 por 2, obtemos 24, o que é par. Mas se subtrairmos