Responda:
Os inteiros são 17, 18 e 19
Explicação:
Passo 1 - Escreva como uma equação:
Etapa 2 - Expandir colchetes e simplificar:
Etapa 3 - Subtraia 2x de ambos os lados:
Etapa 4 - subtraia 2 de ambos os lados
Passo 5 - Divida os dois lados por 2
A soma de três números é 4. Se o primeiro é duplicado e o terceiro é triplicado, a soma é dois menor que o segundo. Quatro a mais do que o primeiro adicionado ao terceiro são dois a mais que o segundo. Encontre os números?
1º = 2, 2º = 3, 3º = -1 Crie as três equações: Seja 1º = x, 2º = y e 3º = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "" => 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Eliminar a variável y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Resolva para x eliminando a variável z multiplicando o EQ. 1 + EQ. 3 por -2 e adicionando ao EQ. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 "" 3x + 4z = 2 ul (-4x - 4z = -4) -x "" = -2 "" = > x = 2 Resolva para z colocando x em EQ. 2 e EQ. 3: EQ.
Três inteiros pares positivos consecutivos são tais que o produto do segundo e terceiro inteiros é vinte mais do que dez vezes o primeiro inteiro. Quais são esses números?
Deixe os números serem x, x + 2 e x + 4. Então (x + 2) (x + 4) = 10x + 20x ^ 2 + 2x + 4x + 8 = 10x + 20x ^ 2 + 6x + 8 = 10x + 20 x ^ 2 - 4x - 12 = 0 (x - 6) (x + 2) = 0 x = 6 e -2 Como o problema especifica que o inteiro deve ser positivo, temos que os números são 6, 8 e 10. Espero que isso ajude!
Duas vezes um número menos um segundo número é -1. Duas vezes o segundo número adicionado a três vezes o primeiro número é 9. Quais são os dois números?
(x, y) = (1,3) Temos dois números que eu chamarei de x e y. A primeira frase diz "Duas vezes um número menos um segundo número é -1" e eu posso escrever isso como: 2x-y = -1 A segunda frase diz "Duas vezes o segundo número adicionado a três vezes o primeiro número é 9" que eu pode escrever como: 2y + 3x = 9 Vamos notar que ambas as afirmações são linhas e se há uma solução que podemos resolver, o ponto onde essas duas linhas se cruzam é a nossa solução. Vamos encontrá-lo: vou reescrever a primeira equaçã