A função f é tal que f (x) = a ^ 2x ^ 2-ax + 3b para x <1 / (2a) Onde aeb são constantes para o caso onde a = 1 eb = -1 Find f ^ - 1 (cf e encontre seu domínio sei domínio de f ^ -1 (x) = alcance de f (x) e é -13/4 mas não conheço direção de sinal de desigualdade?
Ver abaixo. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Intervalo: Coloque em forma y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Valor mínimo -13/4 Isso ocorre em x = 1/2 Então o intervalo é (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Usando a fórmula quadrática: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Com um pouco de reflexão, podemos ver que, para o domínio, temos o inverso necessário. : f ^ (- 1) (x) = (1-s
A função para o custo de materiais para fazer uma camisa é f (x) = 5 / 6x + 5 onde x é o número de camisas. A função para o preço de venda dessas camisas é g (f (x)), onde g (x) = 5x + 6. Como você encontra o preço de venda de 18 camisas?
A resposta é g (f (18)) = 106 Se f (x) = 5 / 6x + 5 e g (x) = 5x + 6 Então g (f (x)) = g (5 / 6x + 5) = 5 (5 / 6x + 5) +6 simplificando g (f (x)) = 25 / 6x + 25 + 6 = 25 / 6x + 31 Se x = 18 Então g (f (18)) = 25/6 * 18 + 31 = 25 * 3 + 31 = 75 + 31 = 106
O gráfico da função f (x) = (x + 2) (x + 6) é mostrado abaixo. Qual afirmação sobre a função é verdadeira? A função é positiva para todos os valores reais de x, onde x> -4. A função é negativa para todos os valores reais de x onde –6 <x <–2.
A função é negativa para todos os valores reais de x onde –6 <x <–2.