Responda:
O comprimento dos lados e o número de pares de lados paralelos. Veja explicação.
Explicação:
Um trapézio é um quadrilátero com finalmente um par de lados paralelos (chamados bases), enquanto um losango deve ter dois pares de lados paralelos (é um caso especial de um paralelogramo).
A segunda diferença é que os lados de um losango são Tudo igual, enquanto um trapézio pode ter todos os 4 lados de um comprimento diferente.
A outra diferença são os ângulos: um losango tem (como todos os paralelogramos) dois pares de ângulos iguais, enquanto não há limitações aos ângulos de um trapézio (claro que há limitações que se aplicam a todos os quadriláteros como: a soma de todos os ângulos 360 graus).
A área de um trapézio é de 60 pés quadrados. Se as bases do trapézio são 8 pés e 12 pés, qual é a altura?
A altura é de 6 pés. A fórmula para a área de um trapézio é A = ((b_1 + b_2) h) / 2 onde b_1 e b_2 são as bases e h é a altura. No problema, a seguinte informação é dada: A = 60 ft ^ 2, b_1 = 8ft, b_2 = 12ft Substituindo estes valores na fórmula dá ... 60 = ((8 + 12) h) / 2 Multiplique ambos os lados por 2. 2 * 60 = ((8 + 12) h) / 2 * 2 120 = ((20) h) / cancel2 * cancel2 120 = 20h Divida ambos os lados por 20 120/20 = (20h) / 20 6 = hh = 6 pés
O perímetro de um trapézio é de 42 cm; o lado oblíquo é de 10cm e a diferença entre as bases é de 6cm. Calcule: a) A área b) Volume obtido pela rotação do trapézio ao redor da base principal?
Vamos considerar um trapézio isósceles ABCD representando a situação do problema dado. Sua base principal CD = xcm, base menor AB = ycm, lados oblíquos são AD = BC = 10cm Dados x-y = 6cm ..... [1] e perímetro x + y + 20 = 42cm => x + y = 22cm ..... [2] Somando [1] e [2] obtemos 2x = 28 => x = 14 cm Então y = 8cm Agora CD = DF = k = 1/2 (xy) = 1/2 (14-8) = 3cm Daí a altura h = sqrt (10 ^ 2-k ^ 2) = sqrt91cm Assim área do trapézio A = 1/2 (x + y) xxh = 1 / 2xx (14 + 8) xxsqrt91 = 11sqrt91cm ^ 2 É óbvio que ao rodar sobre base principal um sólido que
O PERÍMETRO do trapézio isósceles ABCD é igual a 80cm. O comprimento da linha AB é 4 vezes maior que o comprimento de uma linha CD que é 2/5 o comprimento da linha BC (ou as linhas que são as mesmas em comprimento). Qual é a área do trapézio?
A área do trapézio é de 320 cm ^ 2. Deixe o trapézio ser como mostrado abaixo: Aqui, se assumirmos lado menor CD = a e maior lado AB = 4a e BC = a / (2/5) = (5a) / 2. Como tal BC = AD = (5a) / 2, CD = ae AB = 4a Assim, o perímetro é (5a) / 2xx2 + a + 4a = 10a Mas o perímetro é de 80 cm. Portanto, a = 8 cm. e dois lados paralelos mostrados como aeb são 8 cm. e 32 cm. Agora, desenhamos perpendiculares de C e D para AB, que formam dois triângulos retos iguais, cuja hipotenusa é 5 / 2xx8 = 20 cm. e base é (4xx8-8) / 2 = 12 e, portanto, sua altura é sqrt (20 ^ 2-