Responda:
Explicação:
Primeiro considere que:
Isso significa que estamos procurando
E se
Encontrar
Mostre que cos² / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Estou um pouco confuso se eu fizer Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), ele vai se tornar negativo como cos (180 ° -teta) = - costheta em o segundo quadrante. Como faço para provar a questão?
Por favor veja abaixo. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sen ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
O que é cos (arcsin (5/13))?
12/13 Primeiro, considere que: epsilon = arcsin (5/13) epsilon simplesmente representa um ângulo. Isso significa que estamos procurando cor (vermelho) cos (epsilon)! Se epsilon = arcsin (5/13) então, => sin (epsilon) = 5/13 Para encontrar cos (epsilon) Usamos a identidade: cos ^ 2 (epsilon) = 1-sin ^ 2 (epsilon) => cos (epsilon) = sqrt (1-sin ^ 2 (epsilon) => cos (épsilon) = sqrt (1- (5/13) ^ 2) = sqrt ((169-25) / 169) = sqrt (144/169 ) = cor (azul) (12/13)
Como você resolve arcsin (x) + arcsin (2x) = pi / 3?
X = sqrt ((- 7 + sqrt (73)) / 16) arcsin (x) + arcsin (2x) = pi / 3 Comece deixando alfa = arcsin (x) "" e "" beta = arcsin (2x) cor (preto) alfa e cor (preto) beta realmente apenas representam ângulos. Então, temos: alfa + beta = pi / 3 => sen (alfa) = x cos (alfa) = sqrt (1-sin ^ 2 (alfa)) = sqrt (1-x ^ 2) Similarmente, sin (beta ) = 2x cos (beta) = sqrt (1-sin ^ 2 (beta)) = sqrt (1- (2x) ^ 2) = sqrt (1-4x ^ 2) cor (branco) Em seguida, considere alfa + beta = pi / 3 => cos (alfa + beta) = cos (pi / 3) => cos (alfa) cos (beta) -sin (alfa) sen (beta) = 1/2 => sqrt (1-x ^ 2 ) * sqrt