Responda:
Veja uma breve explicação
Explicação:
Para encontrar as assíntotas verticais, defina o denominador -
Para encontrar a assíntota horizontal, divida o termo inicial do numerador -
Responda:
Explicação:
O denominador de f (x) não pode ser zero, pois isso tornaria f (x) indefinido. Equating o denominador para zero e resolver dá os valores que x não pode ser e se o numerador é diferente de zero para esses valores, eles são assíntotas verticais.
# "solve" x (x-2) = 0 #
# x = 0 "e" x = 2 "são as assíntotas" #
# "assíntotas horizontais ocorrem como" #
#lim_ (xto + -oo), f (x) toc "(uma constante)" #
# "dividir termos no numerador / denominador pelo mais alto" #
# "poder de x isto é" x ^ 2 #
#f (x) = (x ^ 2 / x ^ 2- (2x) / x ^ 2 + 1 / x ^ 2) / (x ^ 2 / x ^ 2- (2x) / x ^ 2) = (1 -2 / x + 1 / x ^ 2) / (1-2 / x) #
# "como" xto + -oo, f (x) para (1-0 + 0) / (1-0) #
# y = 1 "é o asymptote" #
# "Os furos ocorrem quando um fator comum é cancelado no" #
# "numerador / denominador. Este não é o caso aqui, portanto" #
# "não há buracos" # gráfico {(x ^ 2-2x + 1) / (x (x-2)) -10, 10, -5, 5}
Quais são as assíntotas e os orifícios, se houver, de f (x) = (1 + 1 / x) / (1 / x)?
O é um buraco em x = 0. f (x) = (1 + 1 / x) / (1 / x) = x + 1 Esta é uma função linear com gradiente 1 e intercepto y 1. Ele é definido a cada x exceto x = 0 porque a divisão por 0 é indefinido.
Quais são as assíntotas e os orifícios, se houver, de f (x) = 1 / x ^ 2-1 / (1-x) + x / (3-x)?
Assíntotas verticais em x = {0,1,3} Assíntotas e buracos estão presentes devido ao fato de que o denominador de qualquer fração não pode ser 0, uma vez que a divisão por zero é impossível. Como não há fatores de cancelamento, os valores não permitidos são todos assíntotas verticais. Portanto: x ^ 2 = 0 x = 0 e 3-x = 0 3 = x e 1-x = 0 1 = x Qual é todas as assíntotas verticais.
Quais são as assíntotas e os orifícios, se houver, de f (x) = 1 / ((x-3) (x ^ 3-x ^ 2-x + 1))?
Assíntotas: x = 3, -1, 1 y = 0 buracos: nenhum f (x) = 1 / ((x-3) (x ^ 3-x ^ 2-x + 1)) f (x) = 1 / ((x-3) (x ^ 2 (x-1) -1 (x-1)) f (x) = 1 / ((x-3) (x ^ 2-1) (x-1)) f (x) = 1 / ((x-3) (x + 1) (x-1) (x-1)); x! = 3, -1,1; y! = 0 Não existem furos para esta função já que não há polinômios com colchetes comuns que aparecem no numerador e no denominador.Existem apenas restrições que devem ser declaradas para cada polinômio entre colchetes no denominador.Essas restrições são as assíntotas verticais.Tenha em mente que existe também uma assíntota