Responda:
Explicação:
A medida de três ângulos do triângulo dado é
Sabemos que a soma de todos os ângulos de qualquer triângulo é
O triângulo A tem uma área de 12 e dois lados de comprimentos 3 e 8. O triângulo B é semelhante ao triângulo A e tem um lado de comprimento 9. Quais são as áreas máxima e mínima possíveis do triângulo B?
Área máxima possível do triângulo B = 108 Área mínima possível do triângulo B = 15.1875 Delta s A e B são semelhantes. Para obter a área máxima do Delta B, o lado 9 do Delta B deve corresponder ao lado 3 do Delta A. Os lados estão na proporção 9: 3. Portanto, as áreas estarão na proporção de 9 ^ 2: 3 ^ 2 = 81: 9 Área máxima do triângulo B = (12 * 81) / 9 = 108 Similarmente para obter a área mínima, o lado 8 do Delta A corresponderá ao lado 9 do Delta B. Os lados estão na relação 9: 8 e
Um triângulo é isósceles e agudo. Se um ângulo do triângulo mede 36 graus, qual é a medida do maior ângulo (s) do triângulo? Qual é a medida do menor ângulo (s) do triângulo?
A resposta a essa pergunta é fácil, mas requer algum conhecimento geral matemático e senso comum. Triângulo Isósceles: - Um triângulo cujos únicos dois lados são iguais é chamado triângulo isósceles. Um triângulo isósceles também tem dois anjos iguais. Triângulo Agudo: - Um triângulo cujos anjos são maiores que 0 ^ @ e menores que 90 ^ @, ou seja, todos os anjos são agudos é chamado de triângulo agudo. O triângulo dado tem um ângulo de 36 ^ e é tanto isósceles quanto agudo. implica que este triângulo
Um triângulo tem vértices A, B e C.O vértice A tem um ângulo de pi / 2, o vértice B tem um ângulo de (pi) / 3 e a área do triângulo é 9. Qual é a área do círculo do triângulo?
Círculo inscrito Área = 4,37405 "" unidades quadradas Resolva os lados do triângulo usando a área especificada = 9 e os ângulos A = pi / 2 e B = pi / 3. Use as seguintes fórmulas para Área: Área = 1/2 * a * b * sin C Área = 1/2 * b * c * sin A Área = 1/2 * a * c * sin B para que tenhamos 9 = 1 / 2 * a * b * sin (pi / 6) 9 = 1/2 * b * c * sin (pi / 2) 9 = 1/2 * a * c * sin (pi / 3) solução simultânea usando essas equações resultará em a = 2 * raiz4 108 b = 3 * raiz4 12 c = raiz4 108 resolve metade do perímetro ss = (a + b + c) /2=