Responda:
Explicação:
A largura de um parquinho retangular é de 2x a 5 pés e o comprimento é de 3x + 9 pés. Como você escreve um polinômio P (x) que representa o perímetro e então avalia este perímetro e então avalia este polinômio de perímetro se x é 4 pés?
O perímetro é o dobro da soma da largura e comprimento. P (x) = 2 ((2x-5) + (3x + 9)) = 2 (5x + 4) = 10x + 8P (4) = 10 (4) + 8 = 48 Verificar. x = 4 significa uma largura de 2 (4) -5 = 3 e um comprimento de 3 (4) + 9 = 21, portanto, um perímetro de 2 (3 + 21) = 48. quad sqrt
Quando um polinômio é dividido por (x + 2), o restante é -19. Quando o mesmo polinômio é dividido por (x-1), o restante é 2, como você determina o restante quando o polinômio é dividido por (x + 2) (x-1)?
Sabemos que f (1) = 2 e f (-2) = - 19 do Teorema do Remanescente Agora encontre o resto do polinômio f (x) quando dividido por (x-1) (x + 2) O restante será de a forma Ax + B, porque é o resto após a divisão por uma quadrática. Podemos agora multiplicar os tempos do divisor pelo quociente Q ... f (x) = Q (x-1) (x + 2) + Ax + B A seguir, insira 1 e -2 para x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Resolvendo essas duas equações, obtemos A = 7 e B = -5 Restante = Ax + B = 7x-5
Quando o polinômio tem quatro termos e você não pode fatorar algo de todos os termos, reorganize o polinômio de modo que possa fatorar dois termos de cada vez. Em seguida, escreva os dois binômios com os quais você acaba. (4ab + 8b) - (3a + 6)?
(a + 2) (4b-3) "o primeiro passo é remover os colchetes" rArr (4ab + 8b) cor (vermelho) (- 1) (3a + 6) = 4ab + 8b-3a-6 "agora fatorizar os termos "agrupando-os" cor (vermelho) (4b) (a + 2) cor (vermelho) (- 3) (a + 2) "tirar" (a + 2) "como um fator comum de cada grupo "= (a + 2) (cor (vermelho) (4b-3)) rArr (4ab + 8b) - (3a + 6) = (a + 2) (4b-3) cor (azul)" Como verificação " (a + 2) (4b-3) larr "expandir usando FOIL" = 4ab-3a + 8b-6larr "comparar com expansão acima"