Dois círculos com raios iguais r_1 e tocando uma linha no mesmo lado de l estão a uma distância de x um do outro. O terceiro círculo do raio r_2 toca os dois círculos. Como encontramos a altura do terceiro círculo de l?

Dois círculos com raios iguais r_1 e tocando uma linha no mesmo lado de l estão a uma distância de x um do outro. O terceiro círculo do raio r_2 toca os dois círculos. Como encontramos a altura do terceiro círculo de l?
Anonim

Responda:

Ver abaixo.

Explicação:

Supondo que # x # é a distância entre os perímetros e

supondo que # 2 (r_1 + r_2) gt x + 2r_1 # temos

#h = sqrt ((r_1 + r_2) ^ 2- (r_1 + x / 2) ^ 2) + r_1-r_2 #

# h # é a distância entre #eu# e o perímetro de # C_2 #